Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (2): 375-381.DOI: 10.11772/j.issn.1001-9081.2021030383
Special Issue: 人工智能
• Artificial intelligence • Previous Articles Next Articles
Yudan CHEN, Cuifang GAO(), Wanqiang SHEN, Ping YIN
Received:
2021-03-15
Revised:
2021-07-02
Accepted:
2021-07-02
Online:
2022-02-11
Published:
2022-02-10
Contact:
Cuifang GAO
About author:
CHEN Yudan, born in 1998, M. S. candidate. Her research interests include computational intelligence, pattern recognition.Supported by:
通讯作者:
高翠芳
作者简介:
陈育丹(1998—),女,江西赣州人,硕士研究生,主要研究方向:计算智能、模式识别;基金资助:
CLC Number:
Yudan CHEN, Cuifang GAO, Wanqiang SHEN, Ping YIN. Iterative intuitionistic fuzzy K-modes algorithm[J]. Journal of Computer Applications, 2022, 42(2): 375-381.
陈育丹, 高翠芳, 沈莞蔷, 殷萍. 迭代直觉模糊K-modes算法[J]. 《计算机应用》唯一官方网站, 2022, 42(2): 375-381.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021030383
数据集 | 对象数 | 属性数 | 类别数 |
---|---|---|---|
Lung-cancer | 32 | 56 | 3 |
Zoo | 101 | 16 | 7 |
Dermatology | 366 | 33 | 6 |
Breast-cancer | 699 | 9 | 2 |
Mushroom | 8 124 | 22 | 2 |
Tab. 1 Description of datasets
数据集 | 对象数 | 属性数 | 类别数 |
---|---|---|---|
Lung-cancer | 32 | 56 | 3 |
Zoo | 101 | 16 | 7 |
Dermatology | 366 | 33 | 6 |
Breast-cancer | 699 | 9 | 2 |
Mushroom | 8 124 | 22 | 2 |
数据集 | AC | PR | RE | |
---|---|---|---|---|
Lung-cancer | 0.85 | 0.621 1 | 0.646 4 | 0.635 6 |
0.95 | 0.6319 | 0.663 3 | 0.643 5 | |
1.05 | 0.611 5 | 0.655 2 | 0.620 7 | |
1.85 | 0.595 9 | 0.666 6 | 0.600 5 | |
2.00 | 0.578 1 | 0.648 0 | 0.584 9 | |
2.50 | 0.563 0 | 0.627 3 | 0.571 0 | |
Zoo | 0.85 | 0.871 9 | 0.857 7 | 0.677 2 |
0.95 | 0.8731 | 0.857 5 | 0.682 0 | |
1.05 | 0.869 0 | 0.848 9 | 0.684 5 | |
1.85 | 0.859 6 | 0.847 1 | 0.662 2 | |
2.00 | 0.856 7 | 0.842 9 | 0.661 1 | |
2.50 | 0.844 6 | 0.836 1 | 0.633 0 | |
Dermatology | 0.85 | 0.708 5 | 0.732 5 | 0.576 9 |
0.95 | 0.719 5 | 0.772 2 | 0.583 6 | |
1.05 | 0.735 8 | 0.799 4 | 0.601 4 | |
1.85 | 0.755 3 | 0.824 5 | 0.629 6 | |
2.00 | 0.7619 | 0.829 5 | 0.638 2 | |
2.50 | 0.755 7 | 0.820 3 | 0.637 5 | |
Breast-cancer | 0.85 | 0.888 5 | 0.917 8 | 0.844 5 |
0.95 | 0.8886 | 0.917 9 | 0.844 6 | |
1.05 | 0.888 1 | 0.917 6 | 0.843 9 | |
1.85 | 0.888 3 | 0.917 7 | 0.844 1 | |
2.00 | 0.887 5 | 0.916 9 | 0.843 2 | |
2.50 | 0.887 3 | 0.916 8 | 0.843 0 | |
Mushroom | 0.85 | 0.717 7 | 0.723 3 | 0.715 0 |
0.95 | 0.728 9 | 0.736 9 | 0.724 8 | |
1.05 | 0.732 0 | 0.742 3 | 0.728 0 | |
1.85 | 0.746 7 | 0.758 0 | 0.742 4 | |
2.00 | 0.7562 | 0.766 5 | 0.752 2 | |
2.50 | 0.738 5 | 0.748 8 | 0.734 2 |
Tab. 2 AC, PR, RE of IIFKM algorithm with different values of β
数据集 | AC | PR | RE | |
---|---|---|---|---|
Lung-cancer | 0.85 | 0.621 1 | 0.646 4 | 0.635 6 |
0.95 | 0.6319 | 0.663 3 | 0.643 5 | |
1.05 | 0.611 5 | 0.655 2 | 0.620 7 | |
1.85 | 0.595 9 | 0.666 6 | 0.600 5 | |
2.00 | 0.578 1 | 0.648 0 | 0.584 9 | |
2.50 | 0.563 0 | 0.627 3 | 0.571 0 | |
Zoo | 0.85 | 0.871 9 | 0.857 7 | 0.677 2 |
0.95 | 0.8731 | 0.857 5 | 0.682 0 | |
1.05 | 0.869 0 | 0.848 9 | 0.684 5 | |
1.85 | 0.859 6 | 0.847 1 | 0.662 2 | |
2.00 | 0.856 7 | 0.842 9 | 0.661 1 | |
2.50 | 0.844 6 | 0.836 1 | 0.633 0 | |
Dermatology | 0.85 | 0.708 5 | 0.732 5 | 0.576 9 |
0.95 | 0.719 5 | 0.772 2 | 0.583 6 | |
1.05 | 0.735 8 | 0.799 4 | 0.601 4 | |
1.85 | 0.755 3 | 0.824 5 | 0.629 6 | |
2.00 | 0.7619 | 0.829 5 | 0.638 2 | |
2.50 | 0.755 7 | 0.820 3 | 0.637 5 | |
Breast-cancer | 0.85 | 0.888 5 | 0.917 8 | 0.844 5 |
0.95 | 0.8886 | 0.917 9 | 0.844 6 | |
1.05 | 0.888 1 | 0.917 6 | 0.843 9 | |
1.85 | 0.888 3 | 0.917 7 | 0.844 1 | |
2.00 | 0.887 5 | 0.916 9 | 0.843 2 | |
2.50 | 0.887 3 | 0.916 8 | 0.843 0 | |
Mushroom | 0.85 | 0.717 7 | 0.723 3 | 0.715 0 |
0.95 | 0.728 9 | 0.736 9 | 0.724 8 | |
1.05 | 0.732 0 | 0.742 3 | 0.728 0 | |
1.85 | 0.746 7 | 0.758 0 | 0.742 4 | |
2.00 | 0.7562 | 0.766 5 | 0.752 2 | |
2.50 | 0.738 5 | 0.748 8 | 0.734 2 |
数据集 | 算法 | AC | PR | RE |
---|---|---|---|---|
Lung-cancer | KM | 0.578 9 | 0.627 0 | 0.592 6 |
FKM | 0.610 0 | 0.648 5 | 0.623 1 | |
IFKM | 0.593 0 | 0.657 1 | 0.603 9 | |
NDFKM | 0.594 1 | 0.651 3 | 0.604 6 | |
IIFKM | 0.6319 | 0.6633 | 0.6435 | |
Zoo | KM | 0.846 4 | 0.847 5 | 0.644 7 |
FKM | 0.841 4 | 0.845 8 | 0.640 0 | |
IFKM | 0.843 7 | 0.858 9 | 0.644 8 | |
NDFKM | 0.861 2 | 0.847 6 | 0.680 7 | |
IIFKM | 0.8731 | 0.8575 | 0.6820 | |
Dermatology | KM | 0.665 6 | 0.749 2 | 0.551 0 |
FKM | 0.674 1 | 0.730 9 | 0.554 4 | |
IFKM | 0.686 9 | 0.777 4 | 0.578 3 | |
NDFKM | 0.738 2 | 0.820 7 | 0.599 5 | |
IIFKM | 0.7619 | 0.8295 | 0.6382 | |
Breast-cancer | KM | 0.822 1 | 0.849 9 | 0.751 2 |
FKM | 0.823 8 | 0.849 5 | 0.752 3 | |
IFKM | 0.831 6 | 0.852 3 | 0.764 9 | |
NDFKM | 0.868 2 | 0.907 9 | 0.814 5 | |
IIFKM | 0.8886 | 0.9179 | 0.8446 | |
Mushroom | KM | 0.689 8 | 0.7075 | 0.6859 |
FKM | 0.692 1 | 0.706 7 | 0.687 8 | |
IFKM | 0.713 7 | 0.739 2 | 0.709 1 | |
NDFKM | 0.710 2 | 0.725 5 | 0.705 3 | |
IIFKM | 0.7562 | 0.7665 | 0.7522 |
Tab. 3 Experimental results of five algorithms
数据集 | 算法 | AC | PR | RE |
---|---|---|---|---|
Lung-cancer | KM | 0.578 9 | 0.627 0 | 0.592 6 |
FKM | 0.610 0 | 0.648 5 | 0.623 1 | |
IFKM | 0.593 0 | 0.657 1 | 0.603 9 | |
NDFKM | 0.594 1 | 0.651 3 | 0.604 6 | |
IIFKM | 0.6319 | 0.6633 | 0.6435 | |
Zoo | KM | 0.846 4 | 0.847 5 | 0.644 7 |
FKM | 0.841 4 | 0.845 8 | 0.640 0 | |
IFKM | 0.843 7 | 0.858 9 | 0.644 8 | |
NDFKM | 0.861 2 | 0.847 6 | 0.680 7 | |
IIFKM | 0.8731 | 0.8575 | 0.6820 | |
Dermatology | KM | 0.665 6 | 0.749 2 | 0.551 0 |
FKM | 0.674 1 | 0.730 9 | 0.554 4 | |
IFKM | 0.686 9 | 0.777 4 | 0.578 3 | |
NDFKM | 0.738 2 | 0.820 7 | 0.599 5 | |
IIFKM | 0.7619 | 0.8295 | 0.6382 | |
Breast-cancer | KM | 0.822 1 | 0.849 9 | 0.751 2 |
FKM | 0.823 8 | 0.849 5 | 0.752 3 | |
IFKM | 0.831 6 | 0.852 3 | 0.764 9 | |
NDFKM | 0.868 2 | 0.907 9 | 0.814 5 | |
IIFKM | 0.8886 | 0.9179 | 0.8446 | |
Mushroom | KM | 0.689 8 | 0.7075 | 0.6859 |
FKM | 0.692 1 | 0.706 7 | 0.687 8 | |
IFKM | 0.713 7 | 0.739 2 | 0.709 1 | |
NDFKM | 0.710 2 | 0.725 5 | 0.705 3 | |
IIFKM | 0.7562 | 0.7665 | 0.7522 |
数据集 | 算法 | AC | PR | RE |
---|---|---|---|---|
Lung-cancer | IFKM | 0.5930 | 0.6571 | 0.6039 |
IIFKM0 | 0.6167 | 0.6541 | 0.6297 | |
Zoo | IFKM | 0.8437 | 0.8589 | 0.6448 |
IIFKM0 | 0.8507 | 0.8514 | 0.6672 | |
Dermatology | IFKM | 0.6869 | 0.7774 | 0.5783 |
IIFKM0 | 0.7029 | 0.7941 | 0.5924 | |
Breast-cancer | IFKM | 0.8316 | 0.8523 | 0.7649 |
IIFKM0 | 0.8379 | 0.8611 | 0.7761 | |
Mushroom | IFKM | 0.7137 | 0.7392 | 0.7091 |
IIFKM0 | 0.7390 | 0.7641 | 0.7342 |
Tab. 4 Comparison of experimental results of IFKM algorithm and IIFKM0 algorithm
数据集 | 算法 | AC | PR | RE |
---|---|---|---|---|
Lung-cancer | IFKM | 0.5930 | 0.6571 | 0.6039 |
IIFKM0 | 0.6167 | 0.6541 | 0.6297 | |
Zoo | IFKM | 0.8437 | 0.8589 | 0.6448 |
IIFKM0 | 0.8507 | 0.8514 | 0.6672 | |
Dermatology | IFKM | 0.6869 | 0.7774 | 0.5783 |
IIFKM0 | 0.7029 | 0.7941 | 0.5924 | |
Breast-cancer | IFKM | 0.8316 | 0.8523 | 0.7649 |
IIFKM0 | 0.8379 | 0.8611 | 0.7761 | |
Mushroom | IFKM | 0.7137 | 0.7392 | 0.7091 |
IIFKM0 | 0.7390 | 0.7641 | 0.7342 |
1 | HUANG Z X. Extensions to the k-means algorithm for clustering large data sets with categorical values[J]. Data Mining and Knowledge Discovery, 1998, 2(3): 283-304. 10.1023/a:1009769707641 |
2 | HUANG Z X, NG M K. A fuzzy k-modes algorithm for clustering categorical data[J]. IEEE Transactions on Fuzzy Systems, 1999, 7(4): 446-452. 10.1109/91.784206 |
3 | KIM D W, LEE K H, LEE D. Fuzzy clustering of categorical data using fuzzy centroids[J]. Pattern Recognition Letters, 2004, 25(11): 1263-1271. 10.1016/j.patrec.2004.04.004 |
4 | BAI L, LIANG J Y, DANG C Y, et al. A novel fuzzy clustering algorithm with between-cluster information for categorical data[J]. Fuzzy Sets and Systems, 2013, 215: 55-73. 10.1016/j.fss.2012.06.005 |
5 | SAHA A, DAS S. Categorical fuzzy k-modes clustering with automated feature weight learning[J]. Neurocomputing, 2015, 166: 422-435. 10.1016/j.neucom.2015.03.037 |
6 | 白亮,曹付元,梁吉业.基于新的相异度量的模糊K-Modes聚类算法[J].计算机工程, 2009, 35(16): 192-194. 10.3969/j.issn.1000-3428.2009.16.069 |
BAI L, CAO F Y, LIANG J Y. Fuzzy K-modes clustering algorithm based on new dissimilarity measure[J]. Computer Engineering, 2009, 35(16): 192-194. 10.3969/j.issn.1000-3428.2009.16.069 | |
7 | CAO F Y, LIANG J Y, BAI L. A new initialization method for categorical data clustering[J]. Expert Systems with Applications, 2009, 36(7): 10223-10228. 10.1016/j.eswa.2009.01.060 |
8 | BAI L, LIANG J Y, DANG C Y, et al. A cluster centers initialization method for clustering categorical data[J]. Expert Systems with Applications, 2012, 39(9): 8022-8029. 10.1016/j.eswa.2012.01.131 |
9 | JIANG F, LIU G Z, DU J W, et al. Initialization of K-modes clustering using outlier detection techniques[J]. Information Sciences, 2016, 332: 167-183. 10.1016/j.ins.2015.11.005 |
10 | KUMAR A, KUMAR S. A support based initialization algorithm for categorical data clustering[J]. Journal of Information Technology Research, 2018, 11(2): 53-67. 10.4018/jitr.2018040104 |
11 | WANG C, DONG X J, ZHOU F, et al. Coupled attribute similarity learning on categorical data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2015, 26(4): 781-797. 10.1109/tnnls.2014.2325872 |
12 | JIAN S L, CAO L B, LU K, et al. Unsupervised coupled metric similarity for non-IID categorical data[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30(9): 1810-1823. 10.1109/tkde.2018.2808532 |
13 | JIA H, CHEUNG Y M, LIU J M. A new distance metric for unsupervised learning of categorical data[J]. IEEE Transactions on Neural Networks and Learning Systems, 2016, 27(5): 1065-1079. 10.1109/tnnls.2015.2436432 |
14 | JIAN S L, PANG G S, CAO L B, et al. CURE: flexible categorical data representation by hierarchical coupling learning[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(5): 853-866. 10.1109/tkde.2018.2848902 |
15 | GAN G J, WU J H, YANG Z J. A genetic fuzzy k-modes algorithm for clustering categorical data[J]. Expert Systems with Applications, 2009, 36(2Pt 1): 1615-1620. 10.1016/j.eswa.2007.11.045 |
16 | YANG C L, KUO R J, CHIEN C H, et al. Non-dominated sorting genetic algorithm using fuzzy membership chromosome for categorical data clustering[J]. Applied Soft Computing, 2015, 30: 113-122. 10.1016/j.asoc.2015.01.031 |
17 | NGUYEN T P Q, KUO R J. Partition-and-merge based fuzzy genetic clustering algorithm for categorical data[J]. Applied Soft Computing, 2019, 75: 254-264. 10.1016/j.asoc.2018.11.028 |
18 | DUTTA D, SIL J, DUTTA P. Automatic clustering by multi-objective genetic algorithm with numeric and categorical features[J]. Expert Systems with Applications, 2019, 137: 357-379. 10.1016/j.eswa.2019.06.056 |
19 | KAUR P. Intuitionistic fuzzy sets based credibilistic fuzzy c-means clustering for medical image segmentation[J]. International Journal of Information Technology, 2017, 9(4): 345-351. 10.1007/s41870-017-0039-2 |
20 | CHAIRA T. A novel intuitionistic fuzzy C means clustering algorithm and its application to medical images[J]. Applied Soft Computing, 2011, 11(2): 1711-1717. 10.1016/j.asoc.2010.05.005 |
21 | KUO R J, LIN T C, ZULVIA F E, et al. A hybrid metaheuristic and kernel intuitionistic fuzzy c-means algorithm for cluster analysis[J]. Applied Soft Computing, 2018, 67: 299-308. 10.1016/j.asoc.2018.02.039 |
22 | VERMA H, GUPTA A, KUMAR D. A modified intuitionistic fuzzy c-means algorithm incorporating hesitation degree[J]. Pattern Recognition Letters, 2019, 122: 45-52. 10.1016/j.patrec.2019.02.017 |
23 | KUMAR D, VERMA H, MEHRA A, et al. A modified intuitionistic fuzzy c-means clustering approach to segment human brain MRI image[J]. Multimedia Tools and Applications, 2019, 78(10): 12663-12687. 10.1007/s11042-018-5954-0 |
24 | SARKAR J P, SAHA I, CHAKRABORTY S, et al. Machine learning integrated credibilistic semi supervised clustering for categorical data[J]. Applied Soft Computing, 2020, 86: No.105871. 10.1016/j.asoc.2019.105871 |
25 | KUO R J, NGUYEN T P Q. Genetic intuitionistic weighted fuzzy k-modes algorithm for categorical data[J]. Neurocomputing, 2019, 330: 116-126. 10.1016/j.neucom.2018.11.016 |
26 | GOYAL A, SOURAV P A, KALYANARAMAN P. Application of genetic algorithm based intuitionistic fuzzy k-mode for clustering categorical data[J]. Cybernetics and Information Technologies, 2017, 17(4): 99-113. 10.1515/cait-2017-0044 |
27 | YAGER R R. On the measure of fuzziness and negation part I: membership in the unit interval[J]. International Journal of General Systems, 1979, 5(4): 221-229. 10.1080/03081077908547452 |
28 | SUGENO M. Fuzzy measures and fuzzy integrals — a survey[M]// DUBOIS D, PRADE H, YAGER R R. Readings in Fuzzy Sets for Intelligent Systems. San Francisco: Morgan Kaufmann, 1993: 251-257. 10.1016/b978-1-4832-1450-4.50027-4 |
29 | ATANASSOV K T. Intuitionistic fuzzy sets[J]. Fuzzy Sets and Systems, 1986, 20(1): 87-96. 10.1016/s0165-0114(86)80034-3 |
30 | HE Z Y, XU X F, DENG S C. Squeezer: an efficient algorithm for clustering categorical data[J]. Journal of Computer Science and Technology, 2002, 17(5): 611-624. 10.1007/bf02948829 |
31 | HE Z Y, XU X F, DENG S C. Scalable algorithms for clustering large datasets with mixed type attributes[J]. International Journal of Intelligent Systems, 2005, 20(10): 1077-1089. 10.1002/int.20108 |
32 | TSEKOURAS G E, PAPAGEORGIOU D, KOTSIANTIS S, et al. Fuzzy clustering of categorical attributes and its use in analyzing cultural data[J]. International Journal of Computational Intelligence, 2004, 1(2): 147-151. 10.1109/icccyb.2005.1511553 |
33 | NG M K, LI M J, HUANG J Z, et al. On the impact of dissimilarity measure in k-modes clustering algorithm[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(3): 503-507. 10.1109/tpami.2007.53 |
34 | HSU C C, CHEN C L, SU Y W. Hierarchical clustering of mixed data based on distance hierarchy[J]. Information Sciences, 2007, 177(20): 4474-4492. 10.1016/j.ins.2007.05.003 |
35 | BASAK J, KRISHNAPURAM R. Interpretable hierarchical clustering by constructing an unsupervised decision tree[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(1): 121-132. 10.1109/tkde.2005.11 |
36 | CHEUNG Y M, JIA H. A unified metric for categorical and numerical attributes in data clustering [C]// Proceedings of the 2013 Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS7819. Berlin: Springer, 2013: 135-146. |
37 | YANG Y M. An evaluation of statistical approaches to text categorization[J]. Journal of Information Retrieval, 1999, 1(1/2): 69-90. 10.1023/a:1009982220290 |
[1] | Kai XU, Qikai GAO, Ming YIN, Jingjing TAN. Trajectory similarity measurement algorithm based on three-dimensional space area division [J]. Journal of Computer Applications, 2024, 44(1): 318-323. |
[2] | Lianpeng QIU, Chengyun SONG. Noise robust dynamic time warping algorithm [J]. Journal of Computer Applications, 2023, 43(6): 1855-1860. |
[3] | YANG Mengmeng, ZHANG Aihua. Fractal image compression based on gray-level co-occurrence matrix and simultaneous orthogonal matching pursuit [J]. Journal of Computer Applications, 2021, 41(5): 1445-1449. |
[4] | HU Lihua, ZUO Weijian, NIE Yaoyao. Feature matching method based on weighted similarity measurement [J]. Journal of Computer Applications, 2021, 41(2): 511-516. |
[5] | Yubin ZHOU, Hong XIAO, Tao WANG, Wenchao JIANG, Meng XIONG, Zhongtang HE. Health index construction and remaining useful life prediction of mechanical axis based on action cycle degradation similarity measurement [J]. Journal of Computer Applications, 2021, 41(11): 3192-3199. |
[6] | Yike LYU, Kai XU, Zhenqiang HUANG. Trajectory similarity measurement method based on area division [J]. Journal of Computer Applications, 2020, 40(2): 578-583. |
[7] | MA Weiping, LI Wenxin, SUN Jinchuan, CAO Pengxia. Binocular vision target positioning method based on coarse-fine stereo matching [J]. Journal of Computer Applications, 2020, 40(1): 227-232. |
[8] | FU Lidong, HAO Wei, LI Dan, LI Fan. Community dividing algorithm based on similarity of common neighbor nodes [J]. Journal of Computer Applications, 2019, 39(7): 2024-2029. |
[9] | ZHANG Yonglai, ZHOU Yaojian. Review of clustering algorithms [J]. Journal of Computer Applications, 2019, 39(7): 1869-1882. |
[10] | JIANG Yifan, YE Qing. Time series similarity measure based on Siamese neural network [J]. Journal of Computer Applications, 2019, 39(4): 1041-1045. |
[11] | TENG Lei, LI Yuan, LI Zhixing, HU Feng. Cross-social network user alignment algorithm based on knowledge graph embedding [J]. Journal of Computer Applications, 2019, 39(11): 3198-3203. |
[12] | PENG Lei, YANG Xiuyun, ZHANG Yufei, LI Guangyao. Non-rigid point set registration based on global and local similarity measurement [J]. Journal of Computer Applications, 2019, 39(10): 3028-3033. |
[13] | CHANG Bingguo, ZANG Hongying. Time series classifier design based on piecewise dimensionality reduction and updated dynamic time warping [J]. Journal of Computer Applications, 2018, 38(7): 1910-1915. |
[14] | BAO Shuting, SUN Liping, ZHENG Xiaoyao, GUO Liangmin. Density peaks clustering algorithm based on shared near neighbors similarity [J]. Journal of Computer Applications, 2018, 38(6): 1601-1607. |
[15] | XU Su, ZHOU Yingyue. Non-local means denoising algorithm based on image segmentation [J]. Journal of Computer Applications, 2017, 37(7): 2078-2083. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||