Journal of Computer Applications ›› 2014, Vol. 34 ›› Issue (1): 189-193.DOI: 10.11772/j.issn.1001-9081.2014.01.0189
• Network and distributed techno • Previous Articles Next Articles
SONG Yujian1,YE Chunming1,HUANG Zuoxing1,2
Received:
Revised:
Online:
Published:
Contact:
宋玉坚1,叶春明1,黄佐钘1,2
通讯作者:
作者简介:
基金资助:
国家自然科学基金资助项目;教育部人文社会科学规划基金项目;上海市教育委员会科研创新项目;上海市一流学科建设项目
Abstract: An improved multi-objective Cuckoo Search Algorithm (CSA) was proposed to overcome basic multi-objective CSA's default of low convergence speed in the later period and low solution quality when it was used to solve the multi-resource leveling problem. Firstly, a non-uniform mutation operator was embedded in the basic multi-objective cuckoo search to make a perfect balance between exploration and exploitation. Secondly, a differential evolution operator was employed for boosting cooperation and information exchange among the groups to enhance the convergence quality. The simulation test illustrates that the improved multi-objective CSA outperforms the basic multi-objective CSA and Vector Evaluated Particle Swarm Optimization Based on Pareto (VEPSO-BP) algorithm when global convergence is considered.
Key words: multi-objective Cuckoo Search Algorithm (CSA), multi-resouce leveling optimization, non-uniform mutation operator, differential evolution operator, global convergence
摘要: 针对标准多目标布谷鸟算法(CSA)后期收敛速度慢、收敛精度不高的缺陷,提出一种求解多资源均衡优化问题的改进多目标布谷鸟算法。首先,引入非均匀变异算子,以均衡算法的全局搜索能力和局部寻优能力;然后,引进差分进化算子,促进群体间的合作和信息交流,提高算法的收敛精度。通过算例测试表明,改进的多目标布谷鸟算法比标准多目标算法和VEPSO-BP算法具有更好的全局收敛性。
关键词: 多目标布谷鸟算法, 多资源均衡优化, 非均匀变异算子, 差分进化算子, 全局收敛性
CLC Number:
TP18
SONG Yujian YE Chunming HUANG Zuoxing. Cuckoo search algorithm for multi-resource leveling optimization[J]. Journal of Computer Applications, 2014, 34(1): 189-193.
宋玉坚 叶春明 黄佐钘. 多资源均衡优化的布谷鸟算法[J]. 计算机应用, 2014, 34(1): 189-193.
0 / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2014.01.0189
https://www.joca.cn/EN/Y2014/V34/I1/189