Journal of Computer Applications ›› 2015, Vol. 35 ›› Issue (5): 1348-1352.DOI: 10.11772/j.issn.1001-9081.2015.05.1348

Previous Articles     Next Articles

Double subgroups fruit fly optimization algorithm with characteristics of Levy flight

ZHANG Qiantu, FANG Liqing, ZHAO Yulong   

  1. Department of Artillery Engineering, Ordnance Engineering College, Shijiazhuang Hebei 050003, China
  • Received:2014-12-03 Revised:2015-01-15 Online:2015-05-10 Published:2015-05-14

具有Levy飞行特征的双子群果蝇优化算法

张前图, 房立清, 赵玉龙   

  1. 军械工程学院 火炮工程系, 石家庄 050003
  • 通讯作者: 张前图
  • 作者简介:张前图(1991-),男,重庆人,硕士研究生,主要研究方向:武器性能检测与故障诊断; 房立清(1969-),男,河北栾城人,教授,博士,主要研究方向:武器试验、性能检测与故障诊断; 赵玉龙(1972-),男,河北石家庄人,副教授,博士,主要研究方向:装备性能检测与故障诊断.
  • 基金资助:

    军内科研项目.

Abstract:

In order to overcome the problems of low convergence precision and easily relapsing into local optimum in Fruit fly Optimization Algorithm (FOA), by introducing the Levy flight strategy into the FOA, an improved FOA called double subgroups FOA with the characteristics of Levy flight (LFOA) was proposed. Firstly, the fruit fly group was dynamically divided into two subgroups (advanced subgroup and drawback subgroup) whose centers separately were the best individual and the worst individual in contemporary group according to its own evolutionary level. Secondly, a global search was made for drawback subgroup with the guidance of the best individual, and a finely local search was made for advanced subgroup by doing Levy flight around the best individual, so that not only both the global and local search ability balanced, but also the occasionally long distance jump of Levy flight could be used to help the fruit fly jump out of local optimum. Finally, two subgroups exchange information by updating the overall optimum and recombining the subgroups. The experiment results of 6 typical functions show that the new method has the advantages of better global searching ability, faster convergence and more precise convergence.

Key words: Fruit fly Optimization Algorithm (FOA), Levy flight, subgroup, global convergence, fitness

摘要:

针对果蝇优化算法(FOA)易陷入局部最优和收敛精度不高等缺点,在果蝇算法中引入Levy飞行策略,提出了具有Levy飞行特征的双子群果蝇优化算法(LFOA).在迭代寻优过程中,根据果蝇种群的进化程度动态地将果蝇种群划分为以当代最差个体为中心的较差子群和以当代最优个体为中心的较优子群;较差子群在最优个体指导下进行全局搜索,较优子群则围绕最优个体做Levy飞行进行局部搜索,这样既平衡了种群的全局和局部搜索能力,同时又可以利用Levy飞行偶尔的长跳跃来跳出局部最优;两个子群的信息通过最优个体的改变和子群的重组进行交换.对6个典型测试函数的仿真实验表明,LFOA具有全局收敛的能力,相比FOA具有更好的收敛精度、收敛速度和收敛可靠性.

关键词: 果蝇优化算法, Levy飞行, 子群, 全局收敛, 适应度

CLC Number: