Journal of Computer Applications ›› 2015, Vol. 35 ›› Issue (4): 960-963.DOI: 10.11772/j.issn.1001-9081.2015.04.0960

Previous Articles     Next Articles

Parallel algorithm of raster river network extraction based on CUDA

WANG Yuzhuo, LIU Xiuguo, ZHANG Wei   

  1. College of Information Engineering, China University of Geosciences, Wuhan Hubei 430074, China
  • Received:2014-10-21 Revised:2015-01-07 Online:2015-04-10 Published:2015-04-08

统一设备计算架构下的栅格河网提取并行算法

王玉着, 刘修国, 张唯   

  1. 中国地质大学(武汉) 信息工程学院, 武汉 430074
  • 通讯作者: 张唯
  • 作者简介:王玉着(1984-),女,安徽宿州人,博士研究生,主要研究方向:栅格数据空间分析、高性能计算; 刘修国(1969-),男,河南潢川人,教授,博士,主要研究方向:遥感数据处理、信息快速提取; 张唯(1980-),女,湖北孝感人,讲师,博士,主要研究方向:数字地形、空间统计分析。
  • 基金资助:

    国家科技支撑计划项目(2011BAH06B04);国家自然科学基金资助项目(41001225)。

Abstract:

Concerning the low efficiency of calculating flow accumulation on high resolution digital terrain data, a parallel algorithm was put forward based on the Compute Unified Device Architecture (CUDA) and flooding model. Based on the technology of Graphic Processing Unit (GPU), two strategies were designed to improve the speed of the extraction. Firstly, the calculation of flow accumulation was divided into a plurality of independent tasks for parallel processing. Secondly, the time of data exchange was reduced through the asynchronous data transmission. The experimental results show that the efficiency of the parallel algorithm is superior of the serial algorithm. The acceleration of river network extraction reached 62 times in NVIDIA Geforce GTX660 for 600 MB DEM data with 9784×8507 grid size.

Key words: Compute Unified Device Architecture (CUDA), Digital Elevation Model (DEM), raster river network, D8 algorithm, parallel computing

摘要:

针对大规模高分辨率数字地形数据提取栅格河网效率低下的问题,提出了基于统一设备计算架构(CUDA)利用淹没模型提取栅格河网的并行算法。使用图形处理器(GPU)将汇流累积量计算分解为独立的多任务并行处理,通过数据异步传输减少数据交换时间,进而加速河网提取的运算。实验结果表明,该算法运行效率明显优于串行河网提取算法,在NVIDIA Geforce GTX660上对数据量为600 MB(网格大小为9784×8507)数字高程模型(DEM)数据提取河网加速比达到62。

关键词: 统一设备计算架构, 数字高程模型, 栅格河网, D8算法, 并行计算

CLC Number: