[1] 陈康,郑纬民.云计算:系统实例与研究现状[J].软件学报,2009,20(5):1337-1348. (CHEN K, ZHENG W M. Cloud computing:system instances and current research[J]. Journal of Software, 2009, 20(5):1337-1348.) [2] 林闯,苏文博,孟坤,等.云计算安全:架构、机制与模型评价[J].计算机学报,2013,36(9):1765-1784. (LIN C, SU W B, MENG K, et al. Cloud computing security:architecture,mechanism and modeling[J]. Chinese Journal of Computers, 2013, 36(9):1765-1784.) [3] KUFFNER J J, LAVALLE S M. Space-filling trees:a new perspective on incremental search for motion planning[C]//Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE, 2011:2199-2206. [4] DU Z, HE L, CHEN Y, et al. Robot cloud:bridging the power of robotics and cloud computing[J]. Future Generation Computer Systems, 2017, 74:337-348. [5] QURESHI B, KOUBÂA A. Five traits of performance enhancement using cloud robotics:asurvey[J]. Procedia Computer Science, 2014, 37:220-227. [6] XU W, LIU Q, XU W J, et al. Energy condition perception and big data analysis for industrial cloud robotics[J]. Procedia CIRP, 2017, 61:370-375. [7] WAN J, SHEN F. Introduction to the special section on cloud robotics for industrial applications[J]. Computers and Electrical Engineering, 2017, 63:53-55. [8] YAN H, HUA Q, WANG Y, et al. Cloud robotics in smart manufacturing environments:challenges and countermeasures[J]. Computers and Electrical Engineering, 2017, 63:56-65. [9] WAIBEL M, BEETZ M, CIVERA J, et al. RoboEarth-a world wide Web for robots[J]. IEEE Robotics and Automation Magazine, 2011, 18(2):69-82. [10] WANG F Y, ZHANG J, ZHENG X H, et al. Where does AlphaGo go:from church-turing thesis to alphago thesis and beyond[J]. IEEE/CAA Journal of Automatica Sinica, 2016, 3(2):113-120. [11] KEHO B, MATSYKAWA A, CANDIDO S, et al. Cloud-based robot grasping with the google object recognition engine[C]//Proceedings of the 2013 IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE, 2013:4263-4270. [12] 周风余,尹磊,宋锐,等.一种机器人云平台服务构建与调度新方法[J].机器人,2017,39(1):89-98. (ZHOU F Y, YIN L, SONG R, et al, A novel building and scheduling method of cloud platform services for robot[J]. Robot, 2017, 39(1):89-98.) [13] CARDARELLI E, DIGANI V, SABATTINI L, et al. Cooperative cloud robotics architecture for the coordination of multi-AGV systems in industrial warehouses[J]. Mechatronics, 2017, 45:1-13. [14] JEVTIC A, COLOMÉ A, ALENYÀ G, et al. Robot motion adaptation through user intervention and reinforcement learning[J]. Pattern Recognition Letters, 2018, 105:67-75. [15] 党小超,姚浩浩,郝占军.Q学习和蚁群优化混合的无线传感器网络移动代理路由算法[J].计算机应用,2013,33(9):2440-2443,2449. (DANG X C, YAO H H, HAO Z J. Mobile Agent routing algorithm for WSN based on Q learning hybrid with ant colony optimization[J]. Journal of Computer Applications, 2013, 33(9):2440-2443, 2449.) [16] 王超,郭静,包振强.改进的Q学习算法在作业车间调度中的应用[J].计算机应用,2008,28(12):3268-3270. (WANG C, GUO J, BAO Z Q. Application of improved Q learning algorithm to job shop problem[J]. Journal of Computer Applications, 2008, 28(12):3268-3270) [17] LEOTTAU D L, RUIZ-DEL-SOLAR J, BABUŠKA R. Decentralized reinforcement learning of robot behaviors[J]. Artificial Intelligence, 2018, 256:130-159. [18] DRUGAN M, WIERING M, VAMPLEW P, et al. Special issue on multi-objective reinforcement learning[J]. Neurocomputing, 2017, 263:1-2. [19] WATKINS C J C H, DAYAN P. Q-learning[J]. Machine Learning, 1992, 8(3/4):279-292. [20] SHAH S M, BORKAR V S. Q-learning for Markov decision processes with a satisfiability criterion[J]. Systems & Control Letters, 2018, 113:45-51. [21] POURPANAH F, TAN C J, LIM C P, et al. A Q-learning-based multi-agent system for data classification[J]. Applied Soft Computing, 2017, 52:519-531. [22] KHIM S, HONG S, KIM Y, et al. Adaptive visual tracking using the prioritized Q-learning algorithm:MDP-based parameter learning approach[J]. Image & Vision Computing, 2014, 32(12):1090-1101. [23] TSITSIKLIS J N. Asynchronous stochastic approximation and Q-Learning[J]. Machine Learning, 1994, 16(3):185-202. [24] WU R, DOWN D G. Round robin scheduling of heterogeneous parallel servers in heavy traffic[J]. European Journal of Operational Research, 2009, 195(2):372-380. [25] SOUALHIA M, KHOMH F, TAHAR S. Task scheduling in big data platforms:a systematic literature review[J]. The Journal of Systems & Software, 2017, 134:170-189. [26] MAMOUN M B, FOURNEAU J-M, PEKERGIN N. Analyzing weighted round robin policies with a stochastic comparison approach[J]. Computers and Operations Research, 2008, 35(8):2420-2431. [27] SUKSOMPONG W. Scheduling asynchronous round-robin tournaments[J]. Operations Research Letters, 2016, 44(1):96-100 [28] GOYAL T, SINGH A, AGRAWAL A. CloudSim:simulator for cloud computing infrastructure and modeling[J]. Procedia Engineering, 2012, 38:3566-3572. [29] HE Z T, ZHANG X Q, ZHANG H X, et al. Study on new task scheduling strategy in cloud computing environment based on the simulator CloudSim[J]. Advanced Materials Research, 2013, 2249(651):829-834. [30] MEHMI S, VERMA H K, SANGAL A L. Simulation modeling of cloud computing for smart grid using CloudSim[J]. Journal of Electrical Systems and Information Technology, 2016, 4(1):159-172. [31] CHOWDHURY M R, MAHMUD M R, RAHMAN R M. Implementation and performance analysis of various VM placement strategies in CloudSim[J]. Journal of Cloud Computing:Advances, Systems and Applications, 2015, 4(1):Article No. 45. |