[1] MANOUSELIS N, COSTOPOULOU C. Analysis and classification of multi-criteria recommender systems [J]. World Wide Web: Internet and Web Information Systems, 2007, 10(4): 415-441. [2] MANOUSELIS N, COSTOPOULOU C. Experimental analysis of design choices in multi-attribute utility collaborative filtering [J]. International Journal of Pattern Recognition and Artificial Intelligence, 2007, 21(2): 311-331. [3] MIKELI A, APOSTOLOU D, DESPOTIS D. A multi-criteria recom-mendation method for interval scaled ratings [C]// WI-IAT'13: Proceedings of the 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies. Piscataway: IEEE, 2013: 9-12. [4] CHULYADYO R, LERAY P. A personalized recommender system from probabilistic relational model and users' preferences [J]. Procedia Computer Science, 2014, 35: 1063-1072. [5] HDIOUD F, FRIKH B, OUHBI B. Multi-criteria recommender systems based on multi-attribute decision making [C]// Proceedings of the 15th International Conference on Information Integration and Web-based Applications & Services. New York: ACM, 2013: 203-211. [6] NILASHI M, JANNACH D, IBRAHIM O, et al. Clustering-and re- gression-based multi-criteria collaborative filtering with incremental updates [J]. Information Sciences, 2015, 293: 235-250. [7] HUANG S. Designing utility-based recommender systems for e-commerce: Evaluation of preference-elicitation methods [J]. Electronic Commerce Research and Applications, 2011, 10(4): 398-407. [8] HU X. Research on recommender system based on product attributes [D]. Wuhan: Huazhong University of Science and Technology, 2012: 39-65.(胡新明.基于商品属性的电子商务推荐系统研究[D].武汉:华中科技大学,2012:39-65.) [9] SALEHI M, POURZAFERANI M, RAZAVI S A. Hybrid attribute-based recommender system for learning material using genetic algorithm and a multidimensional information model [J]. Egyptian Informatics Journal, 2013, 14(1): 67-78. [10] BURKE R. Hybrid recommender system: survey and experiments [J]. User Modeling and User-Adapted Interaction, 2002, 12(4): 331-370. [11] LIN F, HUANG S, YANG Y. Using radial basis function networks to model multi-attribute utility functions [C]// Proceedings of the 4th Workshop on e-Business. Berlin: Springer, 2005: 215-227. [12] AGATHOKLEOUS M, TSAPATSOULIS N. Learning user models in multi-criteria recommender systems [C]// Proceedings of the 15th International Conference on Engineering Applications of Neural Networks. Berlin: Springer, 2014: 205-216. [13] NUNEZ-VALDEZ E, CUEVA-LOVELLE J, SANJUAN-MARTINEZ O, et al. Implicit feedback techniques on recommender systems applied to electronic books [J]. Computers in Human Behavior, 2012, 28(4): 1186-1193. [14] CHOI K, YOO D, KIM G, et al. A hybrid online-product recommendation system: combining implicit rating-based collaborative filtering and sequential pattern analysis [J]. Electronic Commerce Research and Applications, 2012, 11(4): 309-317. [15] LEE S, CHO Y, KIM S. Collaborative filtering with ordinal scale-based implicit ratings for mobile music recommendations [J]. Information Sciences, 2010, 180(11): 2142-2155. [16] DAO T, JEONG S, AHN H. A novel recommendation model of location-based advertising: context-aware collaborative filtering using GA approach [J]. Expert Systems with Applications, 2012, 39(3): 3731-3739. [17] AKHILAN S, BALASUNDARAM S. Personalization of automobile news documents using genetic algorithm model [J]. Procedia Engineering, 2012, 38: 2930-2938. [18] PU P, CHEN L, HU R. Evaluating recommender systems from the user's perspective: survey of the state of the art [J]. User Modeling and User-Adapted Interaction, 2012, 22(4/5): 317-355. |