Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (9): 2741-2746.DOI: 10.11772/j.issn.1001-9081.2022091361
• Artificial intelligence • Previous Articles Next Articles
Runchao PAN, Qishan YU, Hongfei XIONG, Zhihui LIU()
Received:
2022-09-12
Revised:
2022-11-10
Accepted:
2022-11-14
Online:
2023-02-14
Published:
2023-09-10
Contact:
Zhihui LIU
About author:
PAN Runchao, born in 1997, M. S. candidate. His research interests include recommendation system.Supported by:
通讯作者:
刘智慧
作者简介:
潘润超(1997—),男,江苏常州人,硕士研究生,主要研究方向:推荐系统基金资助:
CLC Number:
Runchao PAN, Qishan YU, Hongfei XIONG, Zhihui LIU. Collaborative recommendation algorithm based on deep graph neural network[J]. Journal of Computer Applications, 2023, 43(9): 2741-2746.
潘润超, 虞启山, 熊泓霏, 刘智慧. 基于深度图神经网络的协同推荐算法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2741-2746.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022091361
数据集 | 用户数 | 商品数 | 交互数 | 稀疏性/% |
---|---|---|---|---|
Gowalla | 29 858 | 40 981 | 1 027 370 | 0.084 |
Yelp-2018 | 31 831 | 40 841 | 1 666 869 | 0.128 |
Amazon-Book | 52 643 | 91 599 | 2 984 108 | 0.062 |
Tab. 1 Statistics of datasets
数据集 | 用户数 | 商品数 | 交互数 | 稀疏性/% |
---|---|---|---|---|
Gowalla | 29 858 | 40 981 | 1 027 370 | 0.084 |
Yelp-2018 | 31 831 | 40 841 | 1 666 869 | 0.128 |
Amazon-Book | 52 643 | 91 599 | 2 984 108 | 0.062 |
算法 | Gowalla | Yelp-2018 | Amazon-Book | |||
---|---|---|---|---|---|---|
BPRMF | 0.129 1 | 0.110 9 | 0.043 3 | 0.035 4 | 0.025 0 | 0.019 6 |
GCMC | 0.147 7 | 0.120 5 | 0.046 2 | 0.037 9 | 0.035 4 | 0.027 0 |
NGCF | 0.153 0 | 0.131 3 | 0.057 9 | 0.047 7 | 0.034 4 | 0.025 3 |
LR-GCCF | 0.151 8 | 0.125 9 | 0.056 1 | 0.034 3 | 0.034 1 | 0.025 8 |
LGC | 0.179 0 | 0.151 8 | 0.063 9 | 0.052 5 | 0.039 6 | 0.029 8 |
Deep NGCF | 0.180 7 | 0.152 1 | 0.064 5 | 0.053 2 | 0.041 7 | 0.033 2 |
Tab. 2 Performance comparison of different recommendation algorithms
算法 | Gowalla | Yelp-2018 | Amazon-Book | |||
---|---|---|---|---|---|---|
BPRMF | 0.129 1 | 0.110 9 | 0.043 3 | 0.035 4 | 0.025 0 | 0.019 6 |
GCMC | 0.147 7 | 0.120 5 | 0.046 2 | 0.037 9 | 0.035 4 | 0.027 0 |
NGCF | 0.153 0 | 0.131 3 | 0.057 9 | 0.047 7 | 0.034 4 | 0.025 3 |
LR-GCCF | 0.151 8 | 0.125 9 | 0.056 1 | 0.034 3 | 0.034 1 | 0.025 8 |
LGC | 0.179 0 | 0.151 8 | 0.063 9 | 0.052 5 | 0.039 6 | 0.029 8 |
Deep NGCF | 0.180 7 | 0.152 1 | 0.064 5 | 0.053 2 | 0.041 7 | 0.033 2 |
算法 | Gowalla | Yelp-2018 | Amazon-Book | |||
---|---|---|---|---|---|---|
A1 | 0.152 3 | 0.122 9 | 0.059 2 | 0.047 9 | 0.032 3 | 0.024 5 |
A2 | 0.150 5 | 0.121 3 | 0.058 3 | 0.047 2 | 0.029 8 | 0.022 9 |
A3 | 0.178 8 | 0.152 0 | 0.063 1 | 0.052 4 | 0.040 1 | 0.031 8 |
Deep NGCF | 0.180 7 | 0.152 1 | 0.064 5 | 0.053 2 | 0.041 7 | 0.033 2 |
Tab. 3 Ablation experimental results
算法 | Gowalla | Yelp-2018 | Amazon-Book | |||
---|---|---|---|---|---|---|
A1 | 0.152 3 | 0.122 9 | 0.059 2 | 0.047 9 | 0.032 3 | 0.024 5 |
A2 | 0.150 5 | 0.121 3 | 0.058 3 | 0.047 2 | 0.029 8 | 0.022 9 |
A3 | 0.178 8 | 0.152 0 | 0.063 1 | 0.052 4 | 0.040 1 | 0.031 8 |
Deep NGCF | 0.180 7 | 0.152 1 | 0.064 5 | 0.053 2 | 0.041 7 | 0.033 2 |
网络 层数 | Gowalla | Yelp-2018 | Amazon-Book | |||
---|---|---|---|---|---|---|
3 | 0.1781 | 0.1474 | 0.0598 | 0.0473 | 0.0384 | 0.0292 |
8 | 0.1767 | 0.1442 | 0.0607 | 0.0498 | 0.0395 | 0.0298 |
12 | 0.1792 | 0.1512 | 0.0622 | 0.0513 | 0.0416 | 0.0331 |
16 | 0.1807 | 0.1521 | 0.0645 | 0.0532 | 0.0417 | 0.0332 |
20 | 0.1785 | 0.1503 | 0.0633 | 0.0526 | 0.0402 | 0.0311 |
Tab. 4 Influence of number of network layers on model performance
网络 层数 | Gowalla | Yelp-2018 | Amazon-Book | |||
---|---|---|---|---|---|---|
3 | 0.1781 | 0.1474 | 0.0598 | 0.0473 | 0.0384 | 0.0292 |
8 | 0.1767 | 0.1442 | 0.0607 | 0.0498 | 0.0395 | 0.0298 |
12 | 0.1792 | 0.1512 | 0.0622 | 0.0513 | 0.0416 | 0.0331 |
16 | 0.1807 | 0.1521 | 0.0645 | 0.0532 | 0.0417 | 0.0332 |
20 | 0.1785 | 0.1503 | 0.0633 | 0.0526 | 0.0402 | 0.0311 |
1 | 于蒙,何文涛,周绪川,等. 推荐系统综述[J]. 计算机应用, 2022, 42(6): 1898-1913. |
YU M, HE W T, ZHOU X C, et al. Review of recommendation system[J]. Journal of Computer Applications, 2022, 42(6): 1898-1913. | |
2 | 宋瑞雪,李国勇. 基于改进的矩阵分解模型在推荐系统中的应用[J]. 计算机应用, 2019, 39(S1): 93-95. |
SONG R X, LI G Y. Application of improved matrix factorization model in recommendation system[J]. Journal of Computer Applications, 2019, 39(S1): 93-95. | |
3 | SEDHAIN S, MENON A K, SANNER S, et al. AutoRec: autoencoders meet collaborative filtering[C]// Proceedings of the 24th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2015: 111-112. 10.1145/2740908.2742726 |
4 | CHENG H T, KOC L, HARMSEN J, et al. Wide & deep learning for recommender systems[C]// Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. New York: ACM, 2016: 7-10. 10.1145/2988450.2988454 |
5 | KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[EB/OL]. (2017-02-22) [2022-03-02].. 10.48550/arXiv.1609.02907 |
6 | R van den BERG, KIPF T N, WELLING M. Graph convolutional matrix completion[C/OL]// Proceedings of the 2018 KDD Deep Learning Day [2022-03-02].. |
7 | YING R, HE R N, CHEN K F, et al. Graph convolutional neural networks for web-scale recommender systems[C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2018:974-983. 10.1145/3219819.3219890 |
8 | HAMILTON W L, YING R, LESKOVEC J. Inductive representation learning on large graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook, NY: Curran Associates Inc., 2017: 1025-1035. 10.7551/mitpress/11474.003.0014 |
9 | WANG X, HE X N, WANG M, et al. Neural graph collaborative filtering[C]// Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2019: 165-174. 10.1145/3331184.3331267 |
10 | WU F, ZHANG T Y, DE SOUZA A H. Jr.,et al. Simplifying graph convolutional networks[C]// Proceedings of the 36th International Conference on Machine Learning. New York: JMLR.org, 2019: 6861-6871. |
11 | CHEN L, WU L, HONG R C, et al. Revisiting graph based collaborative filtering: a linear residual graph convolutional network approach[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 27-34. 10.1609/aaai.v34i01.5330 |
12 | HE X N, DENG K, WANG X, et al. LightGCN: simplifying and powering graph convolution network for recommendation[C]// Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM, 2020: 639-648. 10.1145/3397271.3401063 |
13 | LI Q M, HAN Z C, WU X M. Deeper insights into graph convolutional networks for semi-supervised learning[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2018: 3538-3545. 10.1609/aaai.v32i1.11604 |
14 | LI G C H, MÜLLER M, THABET A, et al. DeepGCNs: can GCNs go as deep as CNNs?[C]// Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision. Piscataway: IEEE, 2019: 9266-9275. 10.1109/iccv.2019.00936 |
15 | CHIANG W L, LIU X Q, SI S, et al. Cluster-GCN: an efficient algorithm for training deep and large graph convolutional networks[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2019: 257-266. 10.1145/3292500.3330925 |
16 | CHEN M, WEI Z W, HUANG Z F, et al. Simple and deep graph convolutional networks[C]// Proceedings of the 37th International Conference on Machine Learning. New York: JMLR.org, 2020: 1725-1735. |
17 | 张继杰,杨艳,刘勇. 利用初始残差和解耦操作的自适应深层图卷积[J]. 计算机应用, 2022, 42(1):9-15. 10.11772/j.issn.1001-9081.2021071289 |
ZHANG J J, YANG Y, LIU Y. Adaptive deep graph convolution using initial residual and decoupling operations[J]. Journal of Computer Applications, 2022, 42(1): 9-15. 10.11772/j.issn.1001-9081.2021071289 | |
18 | 杨壮,吴斌,廉炜雯,等. 基于注意力机制和深度恒等映射的人脸识别[J]. 传感器与微系统, 2020, 39(9):150-153. |
YANG Z, WU B, LIAN W W, et al. Face recognition based on attention mechanism and deep equivariant mapping[J]. Transducer and Microsystem Technologies, 2020, 39(9): 150-153. | |
19 | OONO K, SUZUKI T. Graph neural networks exponentially lose expressive power for node classification[EB/OL]. (2021-01-06) [2022-03-02].. |
20 | RENDLE S, FREUDENTHALER C, GANTER Z, et al. BPR: Bayesian personalized ranking from implicit feedback[C]// Proceedings of the 25th Conference on Uncertainty in Artificial Intelligence. Arlington, VA: AUAI Press, 2009: 452-461. |
21 | LIANG D W, CHARLIN L, McINERNEY J, et al. Modeling user exposure in recommendation[C]// Proceedings of the 25th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2016: 951-961. 10.1145/2872427.2883090 |
22 | HE X N, LIAO L Z, ZHANG H W, et al. Neural collaborative filtering[C]// Proceedings of the 26th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2017: 173-182. 10.1145/3038912.3052569 |
23 | HE R N, McAULEY J. Ups and downs: modeling the visual evolution of fashion trends with one-class collaborative filtering[C]// Proceedings of the 25th International Conference on World Wide Web. Republic and Canton of Geneva: International World Wide Web Conferences Steering Committee, 2016: 507-517. 10.1145/2872427.2883037 |
24 | 赵若宇. 图神经网络在推荐系统中的应用[D]. 合肥:中国科学技术大学, 2021:1-49. 10.47056/0365-9615-2021-172-12-719-723 |
ZHAO R Y. Application of graph neural networks in recommendation systems[D]. Hefei: University of Science and Technology of China, 2021:1-49. 10.47056/0365-9615-2021-172-12-719-723 | |
25 | 张晟铭. 基于图神经网络的推荐系统研究[D]. 成都:电子科技大学, 2021:1-65. |
ZHANG S M. Research on recommender systems using graph neural networks[D]. Chengdu: University of Electronic Science and Technology of China, 2021:1-65. | |
26 | 肖海涛,何鹏,曾诚. 基于排序学习的Top-k软件服务推荐方法[J]. 计算机应用, 2018, 38(S1): 144-149, 169. |
XIAO H T, HE P, ZENG C. Top-k software service recommendation method based on learning to rank[J]. Journal of Computer Applications, 2018, 38(S1): 144-149, 169. |
[1] | Xingyao YANG, Yu CHEN, Jiong YU, Zulian ZHANG, Jiaying CHEN, Dongxiao WANG. Recommendation model combining self-features and contrastive learning [J]. Journal of Computer Applications, 2024, 44(9): 2704-2710. |
[2] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
[3] | Xinrui LIN, Xiaofei WANG, Yan ZHU. Academic anomaly citation group detection based on local extended community detection [J]. Journal of Computer Applications, 2024, 44(6): 1855-1861. |
[4] | Jie GUO, Jiayu LIN, Zuhong LIANG, Xiaobo LUO, Haitao SUN. Recommendation method based on knowledge‑awareness and cross-level contrastive learning [J]. Journal of Computer Applications, 2024, 44(4): 1121-1127. |
[5] | Dapeng XU, Xinmin HOU. Feature selection method for graph neural network based on network architecture design [J]. Journal of Computer Applications, 2024, 44(3): 663-670. |
[6] | Beijing ZHOU, Hairong WANG, Yimeng WANG, Lisi ZHANG, He MA. Recommendation method using knowledge graph embedding propagation [J]. Journal of Computer Applications, 2024, 44(10): 3252-3259. |
[7] | Haodong ZHENG, Hua MA, Yingchao XIE, Wensheng TANG. Knowledge tracing model based on graph neural network blending with forgetting factors and memory gate [J]. Journal of Computer Applications, 2023, 43(9): 2747-2752. |
[8] | Hongjun HENG, Dingcheng YANG. Knowledge enhanced aspect word interactive graph neural network [J]. Journal of Computer Applications, 2023, 43(8): 2412-2419. |
[9] | Kun ZHANG, Fengyu YANG, Fa ZHONG, Guangdong ZENG, Shijian ZHOU. Source code vulnerability detection based on hybrid code representation [J]. Journal of Computer Applications, 2023, 43(8): 2517-2526. |
[10] | Zifang XIA, Yaxin YU, Ziteng WANG, Jiaqi QIAO. Explainable recommendation mechanism by fusion collaborative knowledge graph and counterfactual inference [J]. Journal of Computer Applications, 2023, 43(7): 2001-2009. |
[11] | Kejun JIN, Hongtao YU, Yiteng WU, Shaomei LI, Jianpeng ZHANG, Honghao ZHENG. Improved defense method for graph convolutional network based on singular value decomposition [J]. Journal of Computer Applications, 2023, 43(5): 1511-1517. |
[12] | Hao SUN, Jian CAO, Haisheng LI, Dianhui MAO. Session-based recommendation model based on enhanced capsule network [J]. Journal of Computer Applications, 2023, 43(4): 1043-1049. |
[13] | Lubao LI, Tian CHEN, Fuji REN, Beibei LUO. Bimodal emotion recognition method based on graph neural network and attention [J]. Journal of Computer Applications, 2023, 43(3): 700-705. |
[14] | Yu WANG, Yubo YUAN, Yi GUO, Jiajie ZHANG. Sentiment boosting model for emotion recognition in conversation text [J]. Journal of Computer Applications, 2023, 43(3): 706-712. |
[15] | Xuanyu SUN, Yancui SHI. Session-based recommendation model by graph neural network fused with item influence [J]. Journal of Computer Applications, 2023, 43(12): 3689-3696. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||