[1] MATSUI M. A generalized model of Convey-Serviced Production Station (CSPS) [J]. Journal of Japan Industrial Management Association, 1993, 44(1): 25-32. [2] MATSUI M. CSPS model: look-ahead controls and physics [J]. International Journal of Production Research, 2005, 43 (10): 2001-2025. [3] CHEN Y J, TANG H, PEI R, et al. Event-based optimization control of conveyor-serviced production station [C]// Proceedings of the 2012 31st Chinese Control Conference. Piscataway: IEEE, 2012: 2167-2171. [4] TANG H, ARAI T. Look-ahead control of conveyor-serviced production station by using potential-based online policy iteration [J]. International Journal of Control, 2009, 82(10): 1917-1928. [5] QING Q, TANG H, ZHOU L, et al. The optimization control of single conveyor-serviced production station with variable service rate [C]// Proceedings of the 2013 32nd Chinese Control Conference, Piscataway: IEEE, 2013: 2180-2184. [6] ZHEN Y, ZHANG M, LI L, et al. Robust mixed-model assembly line rebalancing with uncertain demand structure [J]. Modern Manufacturing Engineering, 2014 (2): 70-76.(郑永前, 张明明, 力立安, 等. 不确定需求下混流装配生产线鲁棒再平衡 [J]. 现代制造工程, 2014 (2): 70-76.) [7] AHMED A, VARAKANTHAM P, ADULYASAKK Y, et al. Regret based robust solutions for uncertain Markov decision processes [EB/OL]. [2014-12-02]. http://ares.lids.mit.edu/fm/documents/regret_2.pdf. [8] TANG H, LIANG X J, GAO J, et al. Roust control policy for semi-Markov decision processes with dependent uncertain parameters [C]// WCICA 2004: Proceedings of the 5th World Congress on Intelligent Control and Automation. Piscataway: IEEE, 2004, 1(1): 515-518. [9] CAO X-R. Semi-Markov decision problems and performance sensitivity analysis [J]. IEEE Transactions on Automatic Control, 2003, 48(5): 758-769. [10] TANG H, LIU C CHENG W. Robust decision problems based on global optimization for uncertain SMDPs [J]. Journal of System Simulation, 2005, 17(11): 2704-2707. (唐昊, 刘春, 程文娟. 不确定SMDP基于全局优化的鲁棒决策问题 [J].系统仿真学报, 2005, 17(11): 2704-2707.) [11] YANG X, DUAN C K, LIAO X X. A note on mathematical aspects of drive-response type synchronization [J]. Chaos, Solitons & Fractals, 1999, 10(9): 1457-1462. [12] CHENG Y, TANG H, MA X. Solution of the robust control policy for SMDPs based on the genetic algorithm and policy iteration [J]. Journal of Hefei University of Technology:Nature Science, 2008, 30(11): 1404-1407.(程燕,唐昊,马学森.基于策略迭代和遗传算法的SMDP鲁棒控制策略求解[J].合肥工业大学学报:自然科学版,2008,30(11):1404-1407.) [13] TANG H, XI H, HAN J, et al. Robust control policy for closed queuing networks with uncertain routing probabilities [J]. Acta Automatica Sinica, 2005, 31(3): 446-450. [14] TANG H, XI H, YIN B. The optimal robust control policy for uncertain semi-Markov control processes [J]. International Journal of Systems Science, 2005, 36(13): 791-800. [15] LIM S H, XU H, MANNOR S. Reinforcement learning in robust markov decision processes [EB/OL]. [2014-12-06]. http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2013_5183.pdf. |