[1] YANG X S. Nature-Inspired Metaheuristic Algorithms[M]. Beckington, UK:Luniver Press, 2008:81-96. [2] 徐晓光,胡楠,徐禹翔,等.改进萤火虫算法在路径规划中的应用[J]. 电子测量与仪器学报,2016,30(11):1735-1742.(XU X G, HU N, XU Y X, et al. Application of improved firefly algorithm in path planning[J]. Journal of Electronic Measurement and Instrumentation, 2016, 30(11):1735-1742.) [3] 李卫军.蛙跳萤火虫算法及其在无线电频谱分配中的应用[J].微型机与应用,2015,34(5):16-18.(LI W J. Study on leapfrog firefly algorithm and its application in the radio spectrum allocation[J]. Microcomputer & Its Applications, 2015, 34(5):16-18.) [4] 张凯,沈洁.基于萤火虫算法和熵权法的水资源优化配置[J].水资源保护,2016,32(3):50-53.(ZHANG K, SHEN J. Optimal allocation of water resources based on firefly algorithm and entropy method[J]. Water Resources Protection, 2016, 32(3):50-53.) [5] 王晓新,陈磊.基于高斯过程的萤火虫算法及其在板料成形优化设计中的应用[J].锻压技术,2015,40(12):26-34.(WANG X X, CHEN L. Firefly algorithm and application in sheet metal forming optimization based on Gaussian process[J]. Forging and Stamping Technology, 2015, 40(12):26-34.) [6] 臧睿,李辉辉.基于标准萤火虫算法的改进与仿真应用[J].计算机科学,2016,43(S2):113-116.(ZANG R, LI H H. Improvement and simulation application based on standard firefly algorithm[J]. Computer Science, 2016, 43(S2):113-116.) [7] 王翔,于浩杰,颜敏,等.一种新颖的改进萤火虫算法[J].计算机与应用化学,2014(8):987-992.(WANG X, YU H J, YAN M, et al. A novel improved firefly algorithm[J]. Computers and Applied Chemistry, 2014(8):987-992.) [8] WANG H, CUI Z, SUN H, et al. Randomly attracted firefly algorithm with neighborhood search and dynamic parameter adjustment mechanism[J]. Soft Computing, 2017, 21(18):5325-5339. [9] YU S, SU S, LU Q, et al. A novel wise step strategy for firefly algorithm[J]. International Journal of Computer Mathematics, 2014, 91(12):2507-2513. [10] YU S, ZHU S, MA Y, et al. A variable step size firefly algorithm for numerical optimization[J]. Applied Mathematics and Computation, 2015, 263(C):214-220. [11] 刘金,吴志健,吴双可,等.GPU上的维度并行随机吸引策略萤火虫算法[J].计算机工程与科学,2016,38(10):1961-1966.(LIU J, WU Z J, WU S K, et al. A dimensionally parallel firefly algorithm with random attraction on GPU[J]. Computer Engineering and Science,2016,38(10):1961-1966.) [12] 陆克中,孙俊.全局信息共享的自适应FA算法[J].计算机工程与科学,2016,38(6):1164-1170.(LU K Z, SUN J. An adaptive FA algorithm based on global information sharing[J]. Computer Engineering and Science, 2016, 38(6):1164-1170.) [13] PENG H, WU Z J, DENG C S. Enhancing differential evolution with commensal learning and uniform local search[J]. Chinese Journal of Electronics, 2017, 26(4):725-733. [14] YANG X S. Firefly algorithm, stochastic test functions and design optimisation[J]. International Journal of Bio-Inspired Computation, 2010, 2(2):78-84. [15] WANG Y, FANG K T. A note on uniform distribution and experimental design[J]. Science Bulletin, 1981, 26(6):485-489. [16] 王元.均匀设计——一种试验设计方法[J].科技导报,1994,12(5):20-21.(WANG Y. Uniform design -a method for experimental design[J]. Science and Technology Review, 1994, 12(5):20-21.) [17] FANG K T, MA C, WINKER P, et al. Uniform design:theory and application[J]. Technometrics, 2000, 42(3):237-248. [18] YAO X, LIU Y, LIN G. Evolutionary programming made faster[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(2):82-102. [19] ROSNER B, GLYNN R J, LEE M L T. Incorporation of clustering effects for the Wilcoxon rank sum test:a large-sample approach[J]. Biometrics, 2003, 59(4):1089-1098. [20] FRIEDMAN M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance[J]. Journal of the American Statistical Association, 1937, 32(200):675-701. |