Journal of Computer Applications ›› 2015, Vol. 35 ›› Issue (8): 2238-2243.DOI: 10.11772/j.issn.1001-9081.2015.08.2238

Previous Articles     Next Articles

Improved ant colony optimization for QoS-based Web service composition optimization

NI Zhiwei1,2, FANG Qinghua1,2, LI Rongrong1,2, LI Yiming1,2   

  1. 1. School of Management, Hefei University of Technology, Hefei Anhui 230009, China;
    2. Key Laboratory of Process Optimization and Intelligent Decision-making, Ministry of Education (Hefei University of Technology), Hefei Anhui 230009, China
  • Received:2015-03-16 Revised:2015-05-18 Online:2015-08-10 Published:2015-08-14

改进蚁群算法在基于服务质量的Web服务组合优化中的应用

倪志伟1,2, 方清华1,2, 李蓉蓉1,2, 李一鸣1,2   

  1. 1. 合肥工业大学 管理学院, 合肥 230009;
    2. 过程优化与智能决策教育部重点实验室(合肥工业大学), 合肥 230009
  • 通讯作者: 方清华(1990-),女(壮族),广西南宁人,硕士研究生,主要研究方向:数据挖掘、群体智能,qinghua565@163.com
  • 作者简介:倪志伟(1963-),男,安徽合肥人,教授,博士生导师,主要研究方向:人工智能、机器学习; 李蓉蓉(1990-),女(回族),福建泉州人,硕士研究生,主要研究方向:群智能算法、云计算; 李一鸣(990-),男,山东聊城人,硕士研究生,主要研究方向:数据挖掘、机器学习。
  • 基金资助:

    国家自然科学基金资助项目(71271071,71490725);国家自然科学基金青年项目(71301041);国家863计划项目(2011AA040501)。

Abstract:

The basic Ant Colony Optimization (ACO) has slow searching speed at prior period and being easy to fall into local optimum at later period. To overcome these shortcomings, the initial pheromone distribution strategy and local optimization strategy were proposed, and a new pheromone updating rule was put forward to strengthen the effective accumulation of pheromone. The improved ACO was used in QoS-based Web service composition optimization problem, and the feasibility and effectiveness of it was verified on QWS2.0 dataset. The experimental results show that, compared with the basic ACO, the improved ACO which updates the pheromone with the distance of the solution and the ideal solution, and the improved genetic algorithm which introduces individual domination strength into the environment selection, the proposed ACO can find more Pareto solutions, and has stronger optimizing capacity and stable performance.

Key words: Web service, service composition technique, Ant Colony Optimization (ACO), Pareto optimal solution, local optimization

摘要:

为了克服基础蚁群算法存在的前期搜索速度较慢、后期极易陷入局部最优解的缺点,提出初始信息素分布策略和局部优化策略;同时还提出了依赖解的质量的信息素更新依据,以增强算法过程中信息素的有效积累。将该改进蚁群算法应用于基于服务质量(QoS)的Web服务组合优化问题中,通过在数据集QWS2.0上的实验对改进蚁群算法的可用性和有效性进行了验证。结果表明改进的蚁群算法与基础蚁群算法、利用解与理想解距离更新信息素的改进蚁群算法以及用支配程度作为解的个体评价的改进遗传算法相比,能够找到更多的非劣解,寻优能力更优,表现出了较稳定的性能。

关键词: Web服务, 服务组合技术, 蚁群算法, Pareto最优解, 局部优化

CLC Number: