[1] 曹荣强,王小宁,卢莎莎,等.基于Portlet的高性能计算应用集成组件[J].科研信息化技术与应用,2017,8(2):18-30.(CAO R Q, WANG X N, LU S S, et al. High performance computing application integration toolkits based on Portlet[J]. e-Science Technology & Application, 2017, 8(2):18-30.) [2] TOWNS J, COCKERILL T, DAHAN M, et al. XSEDE:accelerating scientific discovery[J]. Computing in Science & Engineering, 2014, 16(5):62-74. [3] 迟学斌,肖海力,王小宁,等.国家重点研发计划助力国家高性能计算环境服务化建设迈上新台阶[J].科研信息化技术与应用,2016,7(4):84-88.(CHI X B, XIAO H L, WANG X N, et al. A further promoting toward building China national grid supported by the national key research and development program of China[J]. e-Science Technology & Application, 2016, 7(4):84-88.) [4] TAYLOR I J, DEELMAN E, GANNON D B, et al. Workflows for e-Science:Scientific Workflows for Grids[M]. Berlin:Springer, 2007:9-16. [5] DEELMAN E, SINGH G, SU M, et al. Pegasus:a framework for mapping complex scientific workflows onto distributed systems[J]. Scientific Programming, 2005, 13(3):219-237. [6] BERMAN F. From TeraGrid to knowledge grid[J]. Communications of the ACM, 2001, 44(11):27-28. [7] FOSTER I, KESSELMAN C. Globus:a metacomputing infrastructure toolkit[J]. The International Journal of Supercomputer Applications and High Performance Computing, 1997, 11(2):115-128. [8] 吴响,邓笋根,陆忠华.国内外科学工作流综述研究[J].科研信息化技术与应用,2014,5(5):86-95.(WU X, DENG S G, LU Z H. A review of the study on the scientific workflow[J]. e-Science Technology & Application, 2014, 5(5):86-95.) [9] ATKINSON M, GESING S, MONTAGNAT J, et al. Scientific workflows:past, present and future[J]. Future Generation Computer Systems, 2017, 75:216-227. [10] YU J, BUYYA R. A taxonomy of scientific workflow systems for grid computing[J]. ACM SIGMOD Record, 2005, 34(3):44-49. [11] DEELMAN E, PETERKA T, ALTINTAS I, et al. The future of scientific workflows[J]. The International Journal of High Performance Computing Applications, 2018, 32(1):159-175. [12] 李于锋,莫则尧,肖永浩,等.超算环境科学工作流应用平台的引擎设计和资源调度[J].计算机应用研究,2019,36(7):1-7.(LI Y F, MO Z Y, XIAO Y H,et al. Engine design and resource scheduling of scientific workflow application platform in supercomputing[J]. Application Research of Computers, 2019, 36(7):1-7.) [13] LU S, PAI D, HUA J, et al. A task abstraction and mapping approach to the shimming problem in scientific workflows[C]//Proceedings of the 2009 IEEE International Conference on Services Computing. Piscataway, NJ:IEEE, 2009:284-291. [14] HUERTA E A, HAAS R, JHA S, et al. Supporting high-performance and high-throughput computing for experimental science[J]. Computing and Software for Big Science, 2019, 3(1):5. [15] JAIN A, ONG S P, CHEN W, et al. FireWorks:a dynamic workflow system designed for high-throughput applications[J]. Concurrency and Computation:Practice and Experience, 2015, 27(17):5037-5059. |