[1] MEIJERING E. A chronology of interpolation: from ancient astronomy to modern signal and image processing [J]. Proceedings of the IEEE, 2002, 90(3): 319-342. [2] BURDEN R L, FAIRES J D. Numerical analysis [M]. 7th ed. Beijing: Higher Education Press, 2001:104-165. [3] GONZALEZ R C, WOODS R E. Digital image processing [M]. RUAN Q, RUAN Y, translated. 3rd ed. Beijing: Publishing House of Electronics Industry, 2011: 36-38. (GONZALEZ R C, WOODS R E. 数字图像处理 [M]. 阮秋琦, 阮宇智, 译. 3版. 北京: 电子工业出版社, 2011: 36-38.) [4] NIEMITALO O. Polynomial interpolators for high-quality resampling of oversampled audio [EB/OL]. [2013-12-24]. http://yehar.com/blog/wp-content/uploads/2009/08/deip.pdf. [5] LEHMANN T M, GONNER C, SPITZER K. Survey: interpolation methods in medical image processing [J]. IEEE Transactions on Medical Imaging, 1999, 18(11): 1049-1075. [6] PHILIPPE T, THIERRY B, UNSER M. Image interpolation and resampling [EB/OL]. [2014-02-27]. http://bigwww.epfl.ch/publications/thevenaz9901.pdf. [7] HER I, YUAN C T. Resampling on a pseudohexagonal grid [J]. CVGIP Graphical Models and Image Processing, 1994, 56(4): 336-347. [8] FREEDMAN G, FATTAL R. Image and video upscaling from local self-examples [J]. ACM Transactions on Graphics, 2011, 30(2): Article No. 12. [9] KIM K I, KWON Y. Single-image super-resolution using sparse regression and natural image prior [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(6): 1127-1133. [10] GEORGIS G, LENTARIS G, REISIS D. Single-image super-resolution using low complexity adaptive iterative back-projection [C]//DSP 2013: Proceedings of the 18th International Conference on Digital Signal Processing. Piscataway: IEEE, 2013: 1-6. [11] YU J, GAO X, TAO D, et al. A unified learning framework for single image super-resolution [J]. IEEE Transactions on Networks and Learning Systems, 2014, 25(4): 780-792. [12] LI X, ORCHARD M T. New edge-directed interpolation [J]. IEEE Transactions on Image Processing, 2001, 10(10): 1521-1527. [13] ARÀNDIGA F, YÁÑEZ D F. Cell-average multiresolution based on local polynomial regression: application to image processing [J]. Applied Mathematics and Computation, 2014, 245: 1-16. [14] BOYD J P. Convergence and error theorems for Hermite function pseudo-RBFs: interpolation on a finite interval by Gaussian-localized polynomials [J]. Applied Numerical Mathematics, 2015, 87: 125-144. [15] UNSER M, ALDROUBI A, EDEN M. Fast B-spline transforms for continuous image representation and interpolation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1991, 13(3): 277-285. [16] KEYS R. Cubic Convolution interpolation for digital image processing [J]. IEEE Transactions on Speech and Signal Processing, 1981, 29(6): 1153-1160. [17] McKINLEY S, LEVINE M. Cubic spline interpolation [J]. Numerical Mathematics: A Journal of Chinese Universities, English Series, 1999, 64(1):44-56. [18] HOU H S, ANDREWS H. Cubic splines for image interpolation and digital filtering [J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1978, 26(6): 508-517. [19] de BOOR C, HOLLIG K, SABIN M. High accuracy geometric Hermite interpolation [J]. Computer Aided Geometric Design, 1987, 4(4): 269-278. [20] BERRUT J-P, TREFETHEN L N. Barycentric Lagrange interpolation [J]. SIAM Review, 2004, 46(3): 501-517. [21] SHARIFI M, SOLEYMANI F, KHAN M, et al. On two-point Hermite interpolation: an application of Newton's theorem [J]. World Applied Sciences Journal, 2011, 13(12): 2451-2454. [22] REICHENBACH S E, GENG F. Two-dimensional cubic convolution [J]. IEEE Transactions on Image Processing, 2003, 12(8): 857-865. [23] SHI J, REICHENBACH S E. Image interpolation by two-dimensional parametric cubic convolution [J]. IEEE Transactions on Image Processing, 2006, 15(7): 1857-1870. [24] WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity [J]. IEEE Transactions on Image Processing, 2004, 13(4): 600-612. [25] CHEN M-J, BOVIK A C. No-reference image blur assessment using multiscale gradient [J]. EURASIP Journal on Image and Video Processing, 2011, 2011: 3. [26] SILVA E A, PANETTA K, AGAIAN S S. Quantifying image similarity using measure of enhancement by entropy [EB/OL]. [2014-06-21]. http://citeseerx.ist.psu.edu/viewdoc/downloaddoi=10.1.1.160.6126&rep=rep1&type=pdf. |