[1] 卢昶.GSM网络优化综合分析系统的设计与实现[D].北京:北京邮电大学,2008:2-4.(LU C.The design and implementation of GSM network optimizing analysis system[D].Beijing:Beijing University of Posts and Telecommunications,2008:2-4.) [2] 刘臣巍.GSM交换无线网络优化[D].长春:吉林大学,2009:1-6.(LIU C W.GSM exchange wireless network optimization[D].Changchun:Jilin University,2009:1-6.) [3] 刘占军.GSM移动通信网络优化的研究与实现[D].成都:电子科技大学,2009:1-3.(LIU Z J.The design and implementation of GSM mobile network[D].Chengdu:University of Electronic Science and Technology of China,2009:1-3.) [4] 白俊杰,何长艳.No.7信令网的网络优化[J].天津通信技术,2004(4):52-53.(BAI J J,HE C Y.No.7 signaling network optimization[J].Tianjin Communications Technology,2004(4):52-53.) [5] 吴宝栋,肖恒辉,陆南昌,等.无线网络智能优化系统及其应用[J].移动通信,2012(12):16-20.(WU B D,XIAO H H,LU N C,et al.Wireless network intelligent optimization system and its application[J].Mobile Communications,2012(12):16-20.) [6] 卢纪宇,白波.GSM无线网络的优化[J].电信技术,2006(12):60-62.(LU J Y,BAI B.GSM wireless network optimization[J].Telecommunications Technology,2006(12):60-62.) [7] 周文静.无线网络优化方式新思路的探讨[J].广东通信技术,2006,26(12):2-6.(ZHOU W J.Discussion on new ideas for wireless network optimization approaches[J].Guangdong Communication Technology,2006,26(12):60-62.) [8] AGRAWAL R,MANNILA H,SRIKANT R,et al.Fast discovery of association rules[M]//Advances in Knowledge Discovery and Data Mining.Menlo Park,CA:American Association for Artificial Intelligence,1996:307-328. [9] 王华奎,李艳萍,张立毅,等.移动通信原理与技术[M].北京:清华大学出版社,2009:1.(WANG H K,LI Y P,ZHANG L Y,et al.Mobile Communication Principle and Technology[M].Beijing:Tsinghua University Press,2009:1.) [10] 刘颖.GSM无线网络优化研究[J].中国新技术新产品,2012(4):36-36.(LIU Y.GSM wireless network optimization research[J].China New Technologies and Products,2012(4):36-36.) [11] CAI R,ZHANG Z,HAO Z.BASSUM:a Bayesian semi-supervised method for classification feature selection[J].Pattern Recognition,2011,44(4):811-820. [12] PEARL J.Causality:Models,Reasoning and Inference[M].2nd ed.Cambridge,UK:Cambridge University Press,2009:49-51. [13] HOYER P O,JANZING D,MOOIJ J M,et al.Nonlinear causal discovery with additive noise models[C]//Advances in Neural Information Processing Systems 21.Cambridge,MA:MIT Press,2008:689-696. [14] XIE X,GENG Z.A recursive method for structural learning of directed acyclic graphs[J].Journal of Machine Learning Research,2008,9:459-483. [15] HAN L,SONG G,CONG G,et al.Overlapping decomposition for causal graphical modeling[C]//KDD'12:Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM,2012:114-122. [16] TSAMARDINOS I,BROWN L E,ALIFERIS C F.The max-min hill-climbing Bayesian network structure learning algorithm[J].Machine Learning,2006,65(1):31-78. [17] CAI R,ZHANG Z,HAO Z.Causal gene identification using combinatorial V-structure search[J].Neural Networks,2013,43:63-71. [18] SHIMIZU S,HOYER P O,HYVÄRINEN A,et al.A linear non-Gaussian acyclic model for causal discovery[J].Journal of Machine Learning Research,2006,7:2003-2030. [19] SHIMIZU S,INAZUMI T,SOGAWA Y,et al.DirectLiNGAM:a direct method for learning a linear non-Gaussian structural equation model[J].Journal of Machine Learning Research,2011,12:1225-1248. [20] JANZING D,MOOIJ J,ZHANG K,et al.Information-geometric approach to inferring causal directions[J].Artificial Intelligence,2012,182/183:1-31. [21] JANZING D,STEUDEL B,SHAJARISALES N,et al.Justifying information-geometric causal inference[M]//Measures of Complexity.Berlin:Springer-Verlag,2015:253-265. [22] ZHANG K,HYVÄRINEN A.On the identifiability of the post-nonlinear causal model[C]//UAI'09:Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence.Arlington:AUAI Press,2009:647-655. [23] CAI R,ZHANG Z,HAO Z.SADA:a general framework to support robust causation discovery[C]//Proceedings of the 30th International Conference on Machine Learning.[S.l.]:JMLR:W&CP,2013,28:208-216. [24] 胡国定,张润楚.多元数据分析方法:纯代数处理[M].天津:南开大学出版社,1990:507-527.(HU G D,ZHANG R C.Multivariate Data Analysis Method:Pure Algebra Processing[M].Tianjin:Nankai University Press,1990:507-527.) [25] MOOIJ J,JANZING D,PETERS J,et al.Regression by dependence minimization and its application to causal inference in additive noise models[C]//ICML 2009:Proceedings of the 26th Annual International Conference on Machine Learning.New York:ACM,2009:745-752. |