Journal of Computer Applications ›› 2016, Vol. 36 ›› Issue (8): 2121-2127.DOI: 10.11772/j.issn.1001-9081.2016.08.2121

Previous Articles     Next Articles

Online incentive mechanism based on reputation for mobile crowdsourcing system

WANG Yingjie1, CAI Zhipeng2, TONG Xiangrong1, PAN Qingxian1, GAO Yang3, YIN Guisheng2   

  1. 1. School of Computer and Control Engineering, Yantai University, Yantai Shandong 264005, China;
    2. College of Computer Science and Technology, Harbin Engineering University, Harbin Heilongjiang 150001, China;
    3. School of Mathematics and Information Science, Yantai University, Yantai Shandong 264005, China
  • Received:2015-03-01 Revised:2015-05-05 Online:2016-08-10 Published:2016-08-10
  • Supported by:
    This work is partially supported by the National Natural Science Foundation of China (61502410, 61572418, 61403329, 61403328), the Natural Science Foundation of Shandong Province (ZR2013FQ023, ZR2014FQ026, BS2014DX012, ZR2015PF010).

基于声誉的移动众包系统的在线激励机制

王莹洁1, 蔡志鹏2, 童向荣1, 潘庆先1, 高洋3, 印桂生2   

  1. 1. 烟台大学 计算机与控制工程学院, 山东 烟台 264005;
    2. 哈尔滨工程大学 计算机科学与技术学院, 哈尔滨150001;
    3. 烟台大学 数学与信息科学学院, 山东 烟台 264005
  • 通讯作者: 蔡志鹏
  • 作者简介:王莹洁(1986-),女,黑龙江齐齐哈尔人,讲师,博士,CCF会员,主要研究方向:移动社会网络、众包系统、可信计算;蔡志鹏(1979-),男,北京人,副教授,博士,主要研究方向:众包系统、无线网络;童向荣(1975-),男,山东招远人,教授,博士,CCF会员,主要研究方向:社会网络、可信计算;潘庆先(1979-),男,山东德州人,副教授,博士研究生,CCF会员,主要研究方向:众包系统、人工智能;高洋(1985-),男,黑龙江哈尔滨人,讲师,硕士,主要研究方向:大数据、数据挖掘;印桂生(1964-),男,江苏泰兴人,教授,博士,CCF会员,主要研究方向:可信软件、智能信息处理。
  • 基金资助:
    国家自然科学基金资助项目(61502410,61572418,61403329,61403328);山东省自然科学基金资助项目(ZR2013FQ023,ZR2014FQ026,BS2014DX012,ZR2015PF010)。

Abstract: In big data environment, the research on mobile crowdsourcing system has become a research hotspot in Mobile Social Network (MSN). However, the selfishness of individuals in networks may cause the distrust problem of mobile crowdsourcing system. In order to inspire individuals to select trustful strategy, an online incentive mechanism based on reputation for mobile crowdsourcing system named RMI was proposed. Combining evolutionary game theory and Wright-Fisher model in biology, the evolution trend of mobile crowdsourcing system was studied. To solve free-riding and false-reporting problems, the reputation updating methods were established. Based on the above researches, an online incentive mechanism was built, which can inspire workers and requesters to select trustful strategies. The simulation results verify the effectiveness and adaptability of the proposed incentive mechanism. Compared with the traditional social norm-based reputation updating method, RMI can improve the trust degree of mobile crowdsourcing system effectively.

Key words: big data, mobile crowdsourcing system, evolutionary game, Wright-Fisher model, incentive mechanism

摘要: 在大数据环境下,对移动众包系统的研究已经成为移动社会网络(MSN)的研究热点。然而由于网络个体的自私性,容易导致移动众包系统的不可信问题,为了激励个体对可信策略的选取,提出一种基于声誉的移动众包系统的激励机制——RMI。首先,结合演化博弈理论和生物学中的Wright-Fisher模型研究移动众包系统的可信演化趋势;在此基础上,分别针对free-riding问题和false-reporting问题建立相应的声誉更新方法,从而形成一套完整的激励机制,激励感知用户和任务请求者对可信策略的选取;最后通过模拟实验对提出的激励机制的有效性和适应性进行了验证。结果显示,与传统的基于社会规范的声誉更新方法相比,RMI有效地提高了移动众包系统的可信性。

关键词: 大数据, 移动众包系统, 演化博弈, Wright-Fisher模型, 激励机制

CLC Number: