[1] 罗英,蔡玉梅,崔小梅,等.资产组合协方差矩阵的信息结构[J].预测,2013,32(4):26-30.(LUO Y, CAI Y M, CUI X M, et al. The information structure of the covariances between financial returns [J]. Forecasting, 2013,32(4): 26-30.) [2] 李冰娜,惠晓峰.基于随机矩阵理论我国股票投资组合噪声分析及风险控制[J].系统工程,2012,30(8):38-44.(LI B N, HUI X F. Study on noise analysis and risk control of portfolios from Chinese stock markets based on random matrix theory[J]. Journal of Systems Engineering, 2012, 30(8): 38-44.) [3] KANG W, KIM K-K, SHIN H. Denoising Monte Carlo sensitivity estimates [J]. Operations Research Letters, 2012, 40(3):195-202. [4] NILANTHA K G D R, RANASINGHE, MALMINI P K C. Eigenvalue density of cross-correlations in Sri Lankan financial market [J]. Physica A: Statistical Mechanics and its Applications, 2007, 378(2): 345-356. [5] LALOUX L, CIZEAU P, POTTERS M, et al. Random matrix theory and financial correlations [J]. International Journal of Theoretical and Applied Finance, 2000, 3(3): 391-397. [6] PLEROU V, GOPIKRISHNAN P, ROSENOW B, et al. A random matrix approach to cross-correlations in financial data [EB/OL]. [2015-12-14]. https://arxiv.org/pdf/cond-mat/0108023.pdf. [7] SHARIFI S, CRANE M, SHAMAIE A, et al. Random matrix theory for portfolio optimization: a stability approach [J]. Physica A: Statistical Mechanics and its Applications, 2004, 335(3/4): 629-643. [8] UTSUGI A, INO K, OSHIKAWA M. Random matrix theory analysis of cross correlations in financial markets [J]. Physical Review E, 2004, 70(2): 026110. [9] MALEVERGNE Y, SORNETTE D. Collective origin of the coexistence of apparent random matrix theory noise and of factors in large sample correlation matrices [J]. Physica A: Statistical Mechanics and its Applications, 2004, 331(3/4): 660-668. [10] KWAPIEĦ J, DROZDZ S, OSWIE P. The bulk of the stock market correlation matrix is not pure noise [J]. Physica A: Statistical Mechanics and its Applications, 2005, 359(1): 589-606. [11] DAI Y-H, XIE W-J, JIANG Z-Q, et al. Correlation structure and principal components in the global crude oil market [J/OL]. arXiv.org: arXiv:1405.5000. [2015-11-05]. http://de.arxiv.org/pdf/1405.5000. [12] 高岳,王家华,杨爱军.具有时变自由度的t-copula蒙特卡罗组合收益风险研究[J].中国管理科学,2011,19(2):10-15.(GAO Y, WANG J H, YANG A J. Estimation on portfolio risk via time-varying t-copula and Monte-Carlo method [J]. Chinese Journal of Management Science, 2011, 19(2): 10-15.) [13] POLITI M, SCALAS E, FULGER D, et al. Spectral densities of Wishart-Lévy free stable random matrices [EB/OL]. [2015-11-28]. http://discovery.ucl.ac.uk/1407446/1/0903.1629v1.pdf. [14] ZHANG M, RUBIO F,PALOMAR D P, et al. Finite-sample linear filter optimization in wireless communications and financial systems [J]. IEEE Transactions on Signal Processing, 2013, 61(20): 5014-5025. [15] 李冰娜.基于RMT去噪法股票投资组合风险优化研究[D].哈尔滨:哈尔滨工业大学,2013:94-103.(LI B N. Research on stock portfolio risk optimization based on the RMT denoising methods [D]. Harbin: Harbin Institute of Technology, 2013: 94-103.) [16] SENSOY A, YUKSEL S, ERTURK M. Analysis of cross-correlations between financial markets after the 2008 crisis [J]. Physica A: Statistical Mechanics and its Applications, 2013, 392(20): 5027-5045. [17] CONLON T, RUSKIN H J, CRANE M. Random matrix theory and fund of funds portfolio optimisation [J]. Physica A: Statistical Mechanics and its Applications, 2007, 382(2): 565-576. |