Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (1): 300-310.DOI: 10.11772/j.issn.1001-9081.2023010028
• Frontier and comprehensive applications • Previous Articles
Jie LONG1, Liang XIE1(), Haijiao XU2
Received:
2023-01-11
Revised:
2023-04-22
Accepted:
2023-04-24
Online:
2023-06-06
Published:
2024-01-10
Contact:
Liang XIE
About author:
LONG Jie, born in 1996, M. S. candidate. His research interests include deep learning, data mining.Supported by:
通讯作者:
谢良
作者简介:
龙杰(1996—),男,四川遂宁人,硕士研究生,主要研究方向:深度学习、数据挖掘;基金资助:
CLC Number:
Jie LONG, Liang XIE, Haijiao XU. Integrated deep reinforcement learning portfolio model[J]. Journal of Computer Applications, 2024, 44(1): 300-310.
龙杰, 谢良, 徐海蛟. 集成的深度强化学习投资组合模型[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 300-310.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023010028
参数 | 取值 |
---|---|
DC阈值 | {0.015,0.01,0.005} |
200 | |
采样步长 | 2 400 |
抽取的样本数量 | 64 |
2 400 | |
截断范围 | 0.2 |
折扣系数 | 0.99 |
0.001 | |
初始资金 | 1 000 000 |
交易费率 | 0.001 5 |
观测历史信息长度 | 10 |
Tab. 1 IDRLPM experimental parameters
参数 | 取值 |
---|---|
DC阈值 | {0.015,0.01,0.005} |
200 | |
采样步长 | 2 400 |
抽取的样本数量 | 64 |
2 400 | |
截断范围 | 0.2 |
折扣系数 | 0.99 |
0.001 | |
初始资金 | 1 000 000 |
交易费率 | 0.001 5 |
观测历史信息长度 | 10 |
分类 | 股票代码 | 企业名称 |
---|---|---|
上证50部分成分股 | 600809 | 山西汾酒 |
600585 | 海螺水泥 | |
603259 | 药明康德 | |
600000 | 浦发银行 | |
601899 | 紫金矿业 | |
600050 | 中国联通 | |
中证500部分成分股 | 000988 | 华工科技 |
000987 | 越秀资本 | |
000983 | 山西焦煤 | |
000528 | 柳工 | |
300070 | 碧水源 | |
300155 | 安居宝 |
Tab. 2 Partial stock symbols and business names
分类 | 股票代码 | 企业名称 |
---|---|---|
上证50部分成分股 | 600809 | 山西汾酒 |
600585 | 海螺水泥 | |
603259 | 药明康德 | |
600000 | 浦发银行 | |
601899 | 紫金矿业 | |
600050 | 中国联通 | |
中证500部分成分股 | 000988 | 华工科技 |
000987 | 越秀资本 | |
000983 | 山西焦煤 | |
000528 | 柳工 | |
300070 | 碧水源 | |
300155 | 安居宝 |
字段名称 | 说明 |
---|---|
close | 收盘价 |
volume | 成交量 |
OBV | 能量潮指标 |
MACD | 平滑移动平均线指标 |
WPR | 威廉姆斯百分比区间指标 |
TSI | 真实强度指数指标 |
AO | 动量震荡指标 |
RSI | 相对强弱指标 |
VWMA | 成交量加权移动平均指标 |
Tab. 3 Experimental data fields
字段名称 | 说明 |
---|---|
close | 收盘价 |
volume | 成交量 |
OBV | 能量潮指标 |
MACD | 平滑移动平均线指标 |
WPR | 威廉姆斯百分比区间指标 |
TSI | 真实强度指数指标 |
AO | 动量震荡指标 |
RSI | 相对强弱指标 |
VWMA | 成交量加权移动平均指标 |
数据集 | 训练集 | 验证集 | 测试集 | ||||
---|---|---|---|---|---|---|---|
时间段 | 样本数 | 时间段 | 样本数 | 时间段 | 样本数 | ||
上证50成分股 | 1 | 2012/01—2017/12 | 1 457 | 2018/01—06 | 120 | 2018/07—12 | 124 |
2 | 2012/01—2018/06 | 1 577 | 2018/07—12 | 124 | 2019/01—06 | 118 | |
3 | 2012/01—2018/12 | 1 701 | 2019/01—06 | 118 | 2019/07—12 | 126 | |
4 | 2012/01—2019/06 | 1 819 | 2019/07—12 | 126 | 2020/01—06 | 117 | |
5 | 2012/01—2019/12 | 1 945 | 2020/01—06 | 117 | 2020/07—12 | 126 | |
6 | 2012/01—2020/06 | 2 062 | 2020/07—12 | 126 | 2021/01—09 | 182 | |
中证500成分股 | 1 | 2012/01—2018/12 | 1 659 | 2019/01—06 | 120 | 2019/07—12 | 128 |
2 | 2012/01—2019/06 | 1 779 | 2019/07—12 | 128 | 2020/01—06 | 117 | |
3 | 2012/01—2018/12 | 1 907 | 2020/01—06 | 117 | 2020/07—12 | 126 | |
4 | 2012/01—2019/06 | 2 024 | 2020/07—12 | 126 | 2021/01—06 | 119 | |
5 | 2012/01—2019/12 | 2 150 | 2021/01—06 | 119 | 2021/07—11 | 95 |
Tab. 4 Statistics of dataset division
数据集 | 训练集 | 验证集 | 测试集 | ||||
---|---|---|---|---|---|---|---|
时间段 | 样本数 | 时间段 | 样本数 | 时间段 | 样本数 | ||
上证50成分股 | 1 | 2012/01—2017/12 | 1 457 | 2018/01—06 | 120 | 2018/07—12 | 124 |
2 | 2012/01—2018/06 | 1 577 | 2018/07—12 | 124 | 2019/01—06 | 118 | |
3 | 2012/01—2018/12 | 1 701 | 2019/01—06 | 118 | 2019/07—12 | 126 | |
4 | 2012/01—2019/06 | 1 819 | 2019/07—12 | 126 | 2020/01—06 | 117 | |
5 | 2012/01—2019/12 | 1 945 | 2020/01—06 | 117 | 2020/07—12 | 126 | |
6 | 2012/01—2020/06 | 2 062 | 2020/07—12 | 126 | 2021/01—09 | 182 | |
中证500成分股 | 1 | 2012/01—2018/12 | 1 659 | 2019/01—06 | 120 | 2019/07—12 | 128 |
2 | 2012/01—2019/06 | 1 779 | 2019/07—12 | 128 | 2020/01—06 | 117 | |
3 | 2012/01—2018/12 | 1 907 | 2020/01—06 | 117 | 2020/07—12 | 126 | |
4 | 2012/01—2019/06 | 2 024 | 2020/07—12 | 126 | 2021/01—06 | 119 | |
5 | 2012/01—2019/12 | 2 150 | 2021/01—06 | 119 | 2021/07—11 | 95 |
模型 | 上证50成分股 | 中证500成分股 | ||||||
---|---|---|---|---|---|---|---|---|
SR | MDD | CR | ARR | SR | MDD | CR | ARR | |
Buy&Hold | 0.40 | 0.29 | 0.33 | 0.09 | 0.42 | 0.16 | 0.40 | 0.12 |
Mean-Variance[ | 1.18 | 0.17 | 0.36 | 0.09 | 0.87 | 0.10 | 0.26 | 0.10 |
PPO[ | 1.42 | 0.09 | 0.71 | 0.10 | 1.01 | 0.15 | 0.45 | 0.17 |
EDRL[ | 0.91 | 0.55 | 0.90 | 0.19 | 1.21 | 0.21 | 0.75 | 0.28 |
IDRLPM | 1.87 | 0.14 | 2.02 | 0.47 | 1.88 | 0.12 | 1.34 | 0.44 |
Tab. 5 Comparison of evaluation indicators of different models
模型 | 上证50成分股 | 中证500成分股 | ||||||
---|---|---|---|---|---|---|---|---|
SR | MDD | CR | ARR | SR | MDD | CR | ARR | |
Buy&Hold | 0.40 | 0.29 | 0.33 | 0.09 | 0.42 | 0.16 | 0.40 | 0.12 |
Mean-Variance[ | 1.18 | 0.17 | 0.36 | 0.09 | 0.87 | 0.10 | 0.26 | 0.10 |
PPO[ | 1.42 | 0.09 | 0.71 | 0.10 | 1.01 | 0.15 | 0.45 | 0.17 |
EDRL[ | 0.91 | 0.55 | 0.90 | 0.19 | 1.21 | 0.21 | 0.75 | 0.28 |
IDRLPM | 1.87 | 0.14 | 2.02 | 0.47 | 1.88 | 0.12 | 1.34 | 0.44 |
测试时间段 | 上证50成分股 | ||||
---|---|---|---|---|---|
Buy&Hold | Mean-Variance[ | PPO[ | EDRL[ | IDRLPM | |
2018/07—2018/12 | 0.13 | 0.12 | 0.17 | 0.19 | 0.30 |
2019/01—2019/06 | 0.11 | 0.09 | 0.13 | 0.17 | 0.22 |
2019/07—2019/12 | 0.06 | 0.07 | 0.14 | 0.14 | 0.17 |
2020/01—2020/06 | 0.02 | 0.06 | 0.12 | 0.26 | 0.31 |
2020/07—2020/12 | 0.01 | 0.03 | 0.11 | 0.14 | 0.31 |
2021/01—2021/09 | -0.01 | 0.06 | 0.09 | -0.06 | 0.10 |
测试时间段 | 中证500成分股 | ||||
Buy&Hold | Mean-Variance[ | PPO[ | EDRL[ | IDRLPM | |
2019/07—2019/12 | 0.07 | 0.17 | 0.23 | 0.24 | 0.27 |
2020/01—2020/06 | 0.06 | 0.08 | 0.14 | 0.17 | 0.20 |
2020/07—2020/12 | 0.12 | 0.14 | 0.09 | 0.26 | 0.25 |
2021/01—2021/06 | 0.02 | 0.04 | 0.05 | 0.24 | 0.27 |
2021/07—2021/11 | 0.04 | -0.08 | 0.02 | 0.04 | 0.11 |
Tab. 6 Comparison of SR indicator among different models in rolling test stage
测试时间段 | 上证50成分股 | ||||
---|---|---|---|---|---|
Buy&Hold | Mean-Variance[ | PPO[ | EDRL[ | IDRLPM | |
2018/07—2018/12 | 0.13 | 0.12 | 0.17 | 0.19 | 0.30 |
2019/01—2019/06 | 0.11 | 0.09 | 0.13 | 0.17 | 0.22 |
2019/07—2019/12 | 0.06 | 0.07 | 0.14 | 0.14 | 0.17 |
2020/01—2020/06 | 0.02 | 0.06 | 0.12 | 0.26 | 0.31 |
2020/07—2020/12 | 0.01 | 0.03 | 0.11 | 0.14 | 0.31 |
2021/01—2021/09 | -0.01 | 0.06 | 0.09 | -0.06 | 0.10 |
测试时间段 | 中证500成分股 | ||||
Buy&Hold | Mean-Variance[ | PPO[ | EDRL[ | IDRLPM | |
2019/07—2019/12 | 0.07 | 0.17 | 0.23 | 0.24 | 0.27 |
2020/01—2020/06 | 0.06 | 0.08 | 0.14 | 0.17 | 0.20 |
2020/07—2020/12 | 0.12 | 0.14 | 0.09 | 0.26 | 0.25 |
2021/01—2021/06 | 0.02 | 0.04 | 0.05 | 0.24 | 0.27 |
2021/07—2021/11 | 0.04 | -0.08 | 0.02 | 0.04 | 0.11 |
模型 | 上证50成分股 | 中证500成分股 | ||||||
---|---|---|---|---|---|---|---|---|
SR | MDD | CR | ARR | SR | MDD | CR | ARR | |
Buy&Hold | 0.40 | 0.29 | 0.33 | 0.09 | 0.42 | 0.16 | 0.40 | 0.12 |
IDRLPM-rad | 1.47 | 0.17 | 1.38 | 0.36 | 1.35 | 0.25 | 1.05 | 0.32 |
IDRLPM-mid | 1.56 | 0.14 | 1.26 | 0.31 | 1.41 | 0.15 | 0.62 | 0.23 |
IDRLPM-con | 1.17 | 0.13 | 0.71 | 0.29 | 1.60 | 0.10 | 0.56 | 0.20 |
IDRLPM-mean | 1.22 | 0.18 | 1.15 | 0.30 | 1.29 | 0.17 | 0.84 | 0.27 |
IDRLPM | 1.87 | 0.14 | 2.02 | 0.47 | 1.88 | 0.12 | 1.34 | 0.44 |
Tab. 7 Comparison of evaluation indexes of IDRLPM integrated module ablation experiments
模型 | 上证50成分股 | 中证500成分股 | ||||||
---|---|---|---|---|---|---|---|---|
SR | MDD | CR | ARR | SR | MDD | CR | ARR | |
Buy&Hold | 0.40 | 0.29 | 0.33 | 0.09 | 0.42 | 0.16 | 0.40 | 0.12 |
IDRLPM-rad | 1.47 | 0.17 | 1.38 | 0.36 | 1.35 | 0.25 | 1.05 | 0.32 |
IDRLPM-mid | 1.56 | 0.14 | 1.26 | 0.31 | 1.41 | 0.15 | 0.62 | 0.23 |
IDRLPM-con | 1.17 | 0.13 | 0.71 | 0.29 | 1.60 | 0.10 | 0.56 | 0.20 |
IDRLPM-mean | 1.22 | 0.18 | 1.15 | 0.30 | 1.29 | 0.17 | 0.84 | 0.27 |
IDRLPM | 1.87 | 0.14 | 2.02 | 0.47 | 1.88 | 0.12 | 1.34 | 0.44 |
模型 | 上证50成分股 | 中证500成分股 | ||||||
---|---|---|---|---|---|---|---|---|
SR | MDD | CR | ARR | SR | MDD | CR | ARR | |
Buy&Hold | 0.40 | 0.29 | 0.33 | 0.09 | 0.42 | 0.16 | 0.40 | 0.12 |
IDRLPM-DC | 1.25 | 0.15 | 0.89 | 0.30 | 1.38 | 0.16 | 0.83 | 0.29 |
IDRLPM-ECANet | 1.71 | 0.13 | 1.75 | 0.39 | 1.73 | 0.15 | 1.28 | 0.41 |
IDRLPM-SENet | 1.70 | 0.14 | 1.73 | 0.37 | 1.81 | 0.15 | 1.33 | 0.43 |
IDRLPM | 1.87 | 0.14 | 2.02 | 0.47 | 1.88 | 0.12 | 1.34 | 0.44 |
Tab. 8 Comparison of evaluation indexes of IDRLPM trend prediction module ablation experiments
模型 | 上证50成分股 | 中证500成分股 | ||||||
---|---|---|---|---|---|---|---|---|
SR | MDD | CR | ARR | SR | MDD | CR | ARR | |
Buy&Hold | 0.40 | 0.29 | 0.33 | 0.09 | 0.42 | 0.16 | 0.40 | 0.12 |
IDRLPM-DC | 1.25 | 0.15 | 0.89 | 0.30 | 1.38 | 0.16 | 0.83 | 0.29 |
IDRLPM-ECANet | 1.71 | 0.13 | 1.75 | 0.39 | 1.73 | 0.15 | 1.28 | 0.41 |
IDRLPM-SENet | 1.70 | 0.14 | 1.73 | 0.37 | 1.81 | 0.15 | 1.33 | 0.43 |
IDRLPM | 1.87 | 0.14 | 2.02 | 0.47 | 1.88 | 0.12 | 1.34 | 0.44 |
1 | MARKOWITS H M. Portfolio selection [J]. The Journal of Finance, 1952, 7(1): 71-91. 10.1111/j.1540-6261.1952.tb01525.x |
2 | SHARPE W F. Capital asset prices: a theory of market equilibrium under conditions of risk [J]. The Journal of Finance, 1964, 19(3): 425-442. 10.1111/j.1540-6261.1964.tb02865.x |
3 | LIU G, MAO Y, SUN Q, et al. Multi-scale two-way deep neural network for stock trend prediction [C]// Proceedings of the 29th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 2020: 4555-4561. 10.24963/ijcai.2020/628 |
4 | SHARMA M, SHEKHAWAT H S. Portfolio optimization and return prediction by integrating modified deep belief network and recurrent neural network [J]. Knowledge-Based Systems, 2022, 250: 109024. 10.1016/j.knosys.2022.109024 |
5 | ZHANG R, YUAN Z, SHAO L. A new combined CNN-RNN model for sector stock price analysis [C]// Proceedings of the 2018 IEEE 42nd Annual Computer Software and Applications Conference. Piscataway: IEEE, 2018: 546-551. 10.1109/compsac.2018.10292 |
6 | LIN Y-F, HUANG T-M, W-H CHUNG, et al. Forecasting fluctuations in the financial index using a recurrent neural network based on price features [J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2020, 5(5): 780-791. 10.1109/tetci.2020.2971218 |
7 | MA Y, HAN R, WANG W. Portfolio optimization with return prediction using deep learning and machine learning [J]. Expert Systems with Applications, 2021, 165: 113973. 10.1016/j.eswa.2020.113973 |
8 | OSBAND I, BLUNDELL C, PRITZEL A, et al. Deep exploration via bootstrapped DQN [C]// Proceedings of the 30th International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2016: 4033-4041. |
9 | YUAN Y, YU Z L, GU Z, et al. A novel multi-step Q-learning method to improve data efficiency for deep reinforcement learning [J]. Knowledge-Based Systems, 2019, 175: 107-117. 10.1016/j.knosys.2019.03.018 |
10 | CARTA S, FERREIRA A, PODDA A S, et al. Multi-DQN: an ensemble of deep Q-learning agents for stock market forecasting [J]. Expert Systems with Applications, 2021, 164: 113820. 10.1016/j.eswa.2020.113820 |
11 | WANG H Z, WU Y L, MIN G Y, et al. Data-driven dynamic resource scheduling for network slicing: A deep reinforcement learning approach [J]. Information Sciences, 2019, 498: 106-116. 10.1016/j.ins.2019.05.012 |
12 | LOWE R, WU Y, TAMAR A, et al. Multi-agent actor-critic for mixed cooperative-competitive environments [C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. Red Hook: Curran Associates Inc., 2017: 6382-6393. |
13 | LIN S Y, BELING P A. An end-to-end optimal trade execution framework based on proximal policy optimization [C]// Proceedings of the 29th International Joint Conference on Artificial Intelligence. San Francisco: Morgan Kaufmann Publishers Inc., 2021: 4548-4554. 10.24963/ijcai.2020/627 |
14 | LEE J, KIM R, YI S-W, et al. MAPS: Multi-agent reinforcement learning-based portfolio management system [C]// Proceedings of the 29th International Joint Conference on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers Inc., 2020: 4520-4526. 10.24963/ijcai.2020/623 |
15 | LIN Y-C, CHEN C-T, SANG C-Y, et al. Multi-agent based deep reinforcement learning for risk-shifting portfolio management [J]. Applied Soft Computing, 2022, 123(C): 108894. 10.1016/j.asoc.2022.108894 |
16 | YANG H Y, LIU X-Y, ZHONG S H, et al. Deep reinforcement learning for automated stock trading: an ensemble strategy [C]// Proceedings of the 1st ACM International Conference on AI in Finance. New York: ACM, 2020, 31: Article No. 31. 10.1145/3383455.3422540 |
17 | LEI K, ZHANG B, LI Y, et al. Time-driven feature-aware jointly deep reinforcement learning for financial signal representation and algorithmic trading [J]. Expert Systems with Applications, 2020, 140: 112872. 10.1016/j.eswa.2019.112872 |
18 | WANG J, JING F, HE M. Stock trading strategy of reinforcement learning driven by turning point classification [J]. Neural Processing Letters, 2023, 55: 3489-3508. 10.1007/s11063-022-11019-w |
19 | YE Y, PEI H, WANG B, et al. Reinforcement-learning based portfolio management with augmented asset movement prediction states [C]// Proceedings of the 34th International Conference on Artificial Intelligence. Palo Alto, CA: AAAI Press, 2020: 1112-1119. 10.1609/aaai.v34i01.5462 |
20 | BUROV S, TABEI S M A, HUYNH T, et al. Distribution of directional change as a signature of complex dynamics [J]. Proceedings of the National Academy of Sciences, 2013, 110(49): 19689-19694. 10.1073/pnas.1319473110 |
21 | LIANG Y, LIN Y, LU Q. Forecasting gold price using a novel hybrid model with ICEEMDAN and LSTM-CNN-CBAM [J]. Expert Systems with Applications, 2022, 206: 117847. 10.1016/j.eswa.2022.117847 |
22 | LONG J, CHEN Z, HE W, et al. An integrated framework of deep learning and knowledge graph for prediction of stock price trend: an application in Chinese stock exchange market [J]. Applied Soft Computing, 2020, 91: 106205. 10.1016/j.asoc.2020.106205 |
23 | 曹超凡,罗泽南,谢佳鑫,等.MDT-LSTM-CNN模型的股价预测研究[J].计算机工程与应用, 2022, 58(5): 280-286. |
CAO C F, LUO Z N, XIE J X, et al. Stock price prediction based on MDT-LSTM-CNN model [J]. Computer Engineering and Applications, 2022, 58(5): 280-286. | |
24 | PATEL J, SHAH S, THAKKAR P, et al. Predicting stock market index using fusion of machine learning techniques [J]. Expert Systems with Applications, 2015, 42: 2162-2172. 10.1016/j.eswa.2014.10.031 |
25 | ZHANG Q, YANG L, ZHOU F. Attention enhanced long short term memory network with multi-source heterogeneous information fusion: an application to BGI genomics [J]. Information Sciences, 2021, 553: 305-330. 10.1016/j.ins.2020.10.023 |
26 | ALMAHDI S, YANG S Y. An adaptive portfolio trading system: a risk-return portfolio optimization using recurrent reinforcement learning with expected maximum drawdown [J]. Expert Systems with Applications, 2017, 87: 267-279. 10.1016/j.eswa.2017.06.023 |
27 | ABOUSSALAH A M, LEE C-G. Continuous control with stacked deep dynamic recurrent reinforcement learning for portfolio optimization [J]. Expert Systems with Applications, 2020, 140: 112891. 10.1016/j.eswa.2019.112891 |
28 | EILERS D, DUNIS C L, VON METTENHEIM H-J, et al. Intelligent trading of seasonal effects: a decision support algorithm based on reinforcement learning [J]. Decision Support Systems, 2014, 64: 100-108. 10.1016/j.dss.2014.04.011 |
29 | DENG Y, KONG Y, BAO F, et al. Sparse coding-inspired optimal trading system for HFT industry [J]. IEEE Transactions on Industrial Informatics, 2015, 11(2): 467-475. 10.1109/tii.2015.2404299 |
30 | JEONG G, KIM H Y. Improving financial trading decisions using deep Q-learning: predicting the number of shares, action strategies, and transfer learning [J]. Expert Systems with Applications, 2019, 117: 125-138. 10.1016/j.eswa.2018.09.036 |
31 | LIU Y, LIU Q, ZHAO H, et al. Adaptive quantitative trading: an imitative deep reinforcement learning approach [J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(2): 2128-2135. 10.1609/aaai.v34i02.5587 |
32 | BETANCOURT C, CHEN W-H. Deep reinforcement learning for portfolio management of markets with a dynamic number of assets [J]. Expert Systems with Applications, 2021, 164: 114002. 10.1016/j.eswa.2020.114002 |
33 | LIU X-Y, YANG H, GAO J, et al. FinRL: Deep reinforcement learning framework to automate trading in quantitative finance [C]// Proceedings of the 2nd ACM International Conference on AI in Finance. New York: ACM, 2021: Article No. 1. 10.1145/3490354.3494366 |
34 | PUTERMAN M L. Markov decision processes [J]. Handbooks in Operations Research and Management Science, 1990, 2: 331-434. 10.1016/s0927-0507(05)80172-0 |
35 | XU B, HU X, TANG X, et al. Ensemble reinforcement learning-based supervisory control of hybrid electric vehicle for fuel economy improvement [J]. IEEE Transactions on Transportation Electrification, 2020, 6(2): 717-727. 10.1109/tte.2020.2991079 |
36 | LI Q, YU C, YAN G. A new multi-predictor ensemble decision framework based on deep reinforcement learning for regional GDP prediction [J]. IEEE Access, 2022, 10: 45266-45279. 10.1109/access.2022.3170905 |
37 | HU J, SHEN L, SUN G, et al. Squeeze-and-excitation networks [C]// Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 7132-7141. 10.1109/cvpr.2018.00745 |
38 | WANG Q L, WU B G, ZHU P F, et al. ECA-Net: Efficient channel attention for deep convolutional neural networks [C]// Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2020: 11531-11539. 10.1109/cvpr42600.2020.01155 |
[1] | Yu WANG, Tianjun REN, Zilin FAN. Air combat maneuver decision-making of unmanned aerial vehicle based on guided Minimax-DDQN [J]. Journal of Computer Applications, 2023, 43(8): 2636-2643. |
[2] | Ziteng WANG, Yaxin YU, Zifang XIA, Jiaqi QIAO. Sparse reward exploration mechanism fusing curiosity and policy distillation [J]. Journal of Computer Applications, 2023, 43(7): 2082-2090. |
[3] | Xiaolin LI, Yusang JIANG. Task offloading algorithm for UAV-assisted mobile edge computing [J]. Journal of Computer Applications, 2023, 43(6): 1893-1899. |
[4] | Heping FANG, Shuguang LIU, Yongyi RAN, Kunhua ZHONG. Integrated scheduling optimization of multiple data centers based on deep reinforcement learning [J]. Journal of Computer Applications, 2023, 43(6): 1884-1892. |
[5] | Xiaohui HUANG, Kaiming YANG, Jiahao LING. Order dispatching by multi-agent reinforcement learning based on shared attention [J]. Journal of Computer Applications, 2023, 43(5): 1620-1624. |
[6] | Tengfei CAO, Yanliang LIU, Xiaoying WANG. Edge computing and service offloading algorithm based on improved deep reinforcement learning [J]. Journal of Computer Applications, 2023, 43(5): 1543-1550. |
[7] | Zhengkai DING, Qiming FU, Jianping CHEN, You LU, Hongjie WU, Nengwei FANG, Bin XING. Ultra-short-term photovoltaic power prediction by deep reinforcement learning based on attention mechanism [J]. Journal of Computer Applications, 2023, 43(5): 1647-1654. |
[8] | Zhe WANG, Qiming WANG, Taoshen LI, Lina GE. Joint optimization method for SWIPT edge network based on deep reinforcement learning [J]. Journal of Computer Applications, 2023, 43(11): 3540-3550. |
[9] | DENG Huiyi, LI Yongzhen, YIN Qiyue. Improved QMIX algorithm from communication and exploration for multi-agent reinforcement learning [J]. Journal of Computer Applications, 2023, 43(1): 202-208. |
[10] | Tianhao QIU, Shurong CHEN. EfficientNet based dual-branch multi-scale integrated learning for pedestrian re-identification [J]. Journal of Computer Applications, 2022, 42(7): 2065-2071. |
[11] | Shaobin DENG, Jun ZHU, Xiaofeng ZHOU, Shuai LI, Shurui LIU. Industrial process control method based on local policy interaction exploration-based deep deterministic policy gradient [J]. Journal of Computer Applications, 2022, 42(5): 1642-1648. |
[12] | Xiaojie LI, Chaoran CUI, Guangle SONG, Yaxi SU, Tianze WU, Chunyun ZHANG. Stock trend prediction method based on temporal hypergraph convolutional neural network [J]. Journal of Computer Applications, 2022, 42(3): 797-803. |
[13] | Yingzhi LI, Man LI, Ping DONG, Huachun ZHOU. Multi‑type application‑layer DDoS attack detection method based on integrated learning [J]. Journal of Computer Applications, 2022, 42(12): 3775-3784. |
[14] | Kangzhe MA, Jiatian PI, Zhoubing XIONG, Jia LYU. 6D pose estimation incorporating attentional features for occluded objects [J]. Journal of Computer Applications, 2022, 42(12): 3715-3722. |
[15] | Rong ZANG, Li WANG, Tengfei SHI. Multi‑agent reinforcement learning based on attentional message sharing [J]. Journal of Computer Applications, 2022, 42(11): 3346-3353. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||