[1] WEI W, QI Y. Information potential fields navigation in wireless Ad-Hoc sensor networks[J]. Sensors, 2011, 11(5):4794-4807. [2] WEI W, XU Q, WANG L, et al. GI/Geom/1 queue based on communication model for mesh networks[J]. International Journal of Communication Systems, 2014, 27(11):3013-3029. [3] WEI W, YANG X L, SHEN P Y, et al. Holes detection in anisotropic sensornets:topological methods[J]. International Journal of Distributed Sensor Networks, 2012, 8(10):135054. [4] SONG H, BRANDT-PEARCE M. A 2-D discrete-time model of physical impairments in wavelength-division multiplexing systems[J]. Journal of Lightwave Technology, 2012, 30(5):713-726. [5] SONG H, BRANDT-PEARCE M. Range of influence and impact of physical impairments in long-haul DWDM systems[J]. Journal of Lightwave Technology, 2013, 31(15):846-854. [6] SONG H, BRANDT-PEARCE M. Model-centric nonlinear equalizer for coherent long-haul fiber-optic communication systems[C]//GLOBECOM 2013:Proceedings of the 2013 IEEE Global Communications Conference. Piscataway, NJ:IEEE, 2013:2394-2399. [7] JEUNG H, LIU Q, SHEN H T, et al. A hybrid prediction model for moving objects[C]//Proceedings of the 2008 IEEE International Conference on Data Engineering. Piscataway, NJ:IEEE, 2008:70-79. [8] YANG J, HU M. TrajPattern:mining sequential patterns from imprecise trajectories of mobile objects[M]//EDBT 2006:Proceedings of the 10th International Conference on Extending Database Technology, LNCS 3896. Berlin:Springer, 2006:664-681. [9] KAMI N, ENOMOTO N, BABA T, et al. Algorithm for detecting significant locations from raw GPS data[C]//Proceedings of the 2010 International Conference on Discovery Science. Berlin:Springer, 2010:221-235. [10] ZHENG Y, ZHANG L, XIE X, et al. Mining interesting locations and travel sequences from GPS trajectories[C]//WWW 2009:Proceedings of the 18th International Conference on World Wide Web. New York:ACM, 2009:791-800. [11] CAO X, CONG G, JENSEN C S. Mining significant semantic locations from GPS data[J]. Proceedings of the VLDB Endowment, 2010, 3(1):1009-1020. [12] ZHOU C, FRANKOWSKI D, LUDFORD P, et al. Discovering personally meaningful places:an interactive clustering approach[J]. ACM Transactions on Information Systems, 2007, 25(3):1-31. [13] KHETARPAUL S, CHAUHAN R, GUPTA S K, et al. Mining GPS data to determine interesting locations[C]//Proceedings of the 8th International Workshop on Information Integration on the Web:in Conjunction with WWW 2011. New York:ACM, 2011:1-6. [14] GIANNOTTI F, NANNI M, PINELLI F, et al. Trajectory pattern mining[C]//KDD' 07 Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2007:330-339. [15] 刘奎恩,肖俊超,丁治明,等.轨迹数据库中热门区域的发现[J].软件学报,2013,24(8):1816-1835.(LIU K E, XIAO J C, DING Z M, et al. Discovery of hot region in trajectory databases[J]. Journal of Software, 2013, 24(8):1816-1835.) [16] 袁冠,夏士雄,张磊,等.基于结构相似度的轨迹聚类算法[J].通信学报,2011,32(9):103-110.(YUAN G, XIA S X, ZHANG L, et al. Trajectory clustering algorithm based on structural similarity[J]. Journal on Communications, 2011, 32(9):103-110.) [17] 袁冠.移动对象轨迹数据挖掘方法研究[D].徐州:中国矿业大学,2012:39-59.(YUAN G. Research on the mining methods of trajectory data for moving objects[D]. Xuzhou:China University of Mining and Technology, 2012:39-59.) [18] HADJIELEFTHERIOU M, KOLLIOS G, GUNOPULOS D, et al. On-line discovery of dense areas in spatio-temporal databases[C]//Proceedings of the 8th International Symposium on Advances in Spatial and Temporal Databases. Berlin:Springer, 2003:306-324. [19] JENSEN C S, LIN D, OOI B C, et al. Effective density queries on continuously moving objects[C]//Proceedings of the 22nd International Conference on Data Engineering. Piscataway, NJ:IEEE, 2006:71-71. [20] VERHEIN F, CHAWLA S. Mining spatio-temporal association rules, sources, sinks, stationary regions and thoroughfares in object mobility databases[C]//Proceedings of the 2010 International Conference on Database Systems for Advanced Applications. Berlin:Springer, 2010:187-201. [21] ASHBROOK D, STARNER T. Using GPS to learn significant locations and predict movement across multiple users[J]. Personal & Ubiquitous Computing, 2003, 7(5):275-286. [22] PALMA A T, BOGORNY V, KUIJPERS B, et al. A clustering-based approach for discovering interesting places in trajectories[C]//SAC' 08:Proceedings of the 2008 ACM Symposium on Applied Computing. New York:ACM, 2008:863-868. [23] LIAO L, PATTERSON D J, FOX D, et al. Building personal maps from GPS data[J]. Annals of the New York Academy of Sciences, 2006, 1093(1):249-65. [24] LIAO L, FOX D, KAUTZ H. Extracting places and activities from GPS traces using hierarchical conditional random fields[J]. International Journal of Robotics Research, 2007, 26(1):119-134. [25] ALVARES L O, BOGORNY V, KUIJPERS B, et al. A model for enriching trajectories with semantic geographical information[C]//GIS' 07:Proceedings of the 15th Annual ACM International Symposium on Advances in Geographic Information Systems. New York:ACM, 2007:Article No. 22. [26] CHENG G Q. Clustering algorithm for multi-density based on grid relative density[J]. Computer Engineering & Applications, 2009, 45(1):156-158. [27] 王亮,胡琨元,库涛,等.随机采样移动轨迹时空热点区域发现及模式挖掘[J].吉林大学学报:工学版,2015,45(3):913-920.(WANG L, HU K Y, KU T, et al. Discovering spatiotemporal hot spot region and mining patterns from moving trajectory random sampling[J]. Journal of Jilin University Engineering and Technology Edition, 2015, 45(3):913-920.) |