[1] 黄晓琳,薛月菊,涂淑琴,等.基于压缩感知理论的RGB-D图像分类方法[J].计算机应用与软件,2014(3):195-198.(HUANG X L, XUE Y J, TU S Q, et al. RGB-D image classification based on compressed sensing theory[J]. Computer Applications and Software, 2014(3):195-198.) [2] 余凯,贾磊,陈雨强,等.深度学习的昨天、今天和明天[J].计算机研究与发展,2013,50(9):1799-1804.(YU K, JIA L, CHEN Y Q, et al. Deep learning:yesterday, today, and tomorrow[J]. Journal of Computer Research and Development, 2013, 50(9):1799-1804.) [3] SOCHER R, HUVAL B, BHAT B, et al. Convolutional-recursive deep learning for 3D object classification[C]//NIPS'12:Proceedings of the 25th International Conference on Neural Information Processing Systems. West Chester, OH:Curran Associates Inc., 2012:665-673. [4] SCHWARZ M, SCHULZ H, BEHNKE S. RGB-D object recognition and pose estimation based on pre-trained convolutional neural network features[C]//Proceedings of the 2015 International Conference on Robotics and Automation. Piscataway, NJ:IEEE, 2015:1329-1335. [5] 卢良锋,谢志军,叶宏武.基于RGB特征与深度特征融合的物体识别算法[J].计算机工程,2016,42(5):186-193.(LU L F, XIA Z J, YE H W. Object recognition algorithm based on RGB feature and depth feature fusing[J]. Computer Engineering, 2016, 42(5):186-193.) [6] CSURKA G, DANCE C R, FAN L, et al. Visual categorization with bags of keypoints[C]//ECCV 2004:Proceedings of ECCV International Workshop on Statistical Learning in Computer Vision. Berlin:Springer, 2004:1-22. [7] LAZEBNIK S, SCHMID C, PONCE J. Beyond bags of features:spatial pyramid matching for recognizing natural scene categories[C]//Proceedings of the 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2006:2169-2178. [8] SILBERMAN N, HOIEM D, KOHLI P, et al. Indoor segmentation and support inference from RGBD images[C]//ECCV'12:Proceedings of the 12th European Conference on Computer Vision. Berlin:Springer, 2012:746-760. [9] BO L, REN X, FOX D. Unsupervised feature learning for RGB-D based object recognition[C]//Proceedings of the 13th International Symposium on Experimental Robotics. Berlin:Springer, 2013:387-402. [10] BLUM M, SPRINGENBERG J T, WULFING J, et al. A learned feature descriptor for object recognition in RGB-D data[C]//Proceedings of the 2012 IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE, 2012:1298-1303. [11] JIN L, GAO S, LI Z, et al. Hand-crafted features or machine learnt features? together they improve RGB-D object recognition[C]//Proceedings of the 2015 IEEE International Symposium on Multimedia. Piscataway, NJ:IEEE, 2015:311-319. [12] BO L, REN X, FOX D. Kernel descriptors for visual recognition[C]//Proceedings of the 2010 Conference on Neural Information Processing Systems 2010. West Chester, OH:Curran Associates Inc., 2010:244-252. [13] BO L, REN X, FOX D. Depth kernel descriptors for object recognition[C]//Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ:IEEE, 2011:821-826. [14] WANG J, YANG J, YU K, et al. Locality-constrained linear coding for image classification[C]//Proceedings of the 2010 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2010:3360-3367. [15] LAI K, BO L, REN X, et al. A large-scale hierarchical multi-view RGB-D object dataset[C]//ICRA 2011:Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Piscataway, NJ:IEEE, 2011:1817-1824. [16] BO L, LAI K, REN X, et al. Object recognition with hierarchical kernel descriptors[C]//Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2011:1729-1736. [17] JOHNSON A E, HEBERT M. Using spin images for efficient object recognition in cluttered 3D scenes[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(5):433-449. [18] YANG J C, YU K, GONG Y H, et al. Linear spatial pyramid matching using sparse coding for image classification[C]//Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ:IEEE, 2009:1794-1801. [19] YU K, ZHANG T, GONG Y H. Nonlinear learning using local coordinate coding[C]//NIPS 2009:Advances in Neural Information Processing Systems 22. West Chester, OH:Curran Associates Inc., 2009:1-9. [20] FAN R E, CHANG K W, HSIEH C J, et al. LIBLINEAR:a library for large linear classification[J]. Journal of Machine Learning Research, 2010, 9(12):1871-1874. [21] BO L, SMINCHISESCU C. Efficient match kernel between sets of features for visual recognition[C]//NIPS 2009:Advances in Neural Information Processing Systems 22. West Chester, OH:Curran Associates Inc., 2009:135-143. |