[1] 李茂莹,杨柳,胡清华. 同构迁移学习理论和算法研究进展[J]. 南京信息工程大学学报(自然科学版), 2019, 11(3):269-277.(LI M Y, YANG L, HU Q H. A survey on theories and algorithms about homogeneous transfer learning[J]. Journal of Nanjing University of Information Science and Technology (Natural Science Edition), 2019, 11(3):269-277.) [2] 韩嵩,韩秋弘. 半监督学习研究的述评[J]. 计算机工程与应用, 2020, 56(6):19-27.(HAN S, HAN Q H. Review of semi-supervised learning research[J]. Computer Engineering and Applications, 2020, 56(6):19-27.) [3] 贾颖霞,郎丛妍,冯松鹤. 基于类别相关的领域自适应交通图像语义分割方法[J]. 计算机研究与发展, 2020, 57(4):876-887. (JIA Y X, LANG C Y, FENG S H. A semantic segmentation method of traffic scene based on categories-aware domain adaptation[J]. Journal of Computer Research and Development, 2020, 57(4):876-887.) [4] JIA X, SUN F. Unsupervised deep domain adaptation based on weighted adversarial network[J]. IEEE Access, 2020, 8:64020-64027. [5] YANG J, YAN R, HAUPTMANN A G. Cross-domain video concept detection using adaptive SVMs[C]//Proceedings of the 15th ACM International Conference on Multimedia. New York:ACM, 2007:188-197. [6] DUAN L, TSANG I W, XU D. Domain transfer multiple kernel learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(3):465-479. [7] MA Z, NIE F, YANG Y, et al. Web image annotation via subspacesparsity collaborated feature selection[J]. IEEE Transactions on Multimedia, 2012, 14(4):1021-1030. [8] NIE F, XU D, TSANG I W H, et al. Flexible manifold embedding:a framework for semi-supervised and unsupervised dimension reduction[J]. IEEE Transactions on Image Processing, 2010, 19(7):1921-1932. [9] 姚哲,陶剑文. 多源适应多标签分类框架[J]. 计算机工程与应用, 2017, 53(7):88-96, 170.(YAO Z, TAO J W. Multi-source adaptation multi-label classification framework via joint sparse feature selection and shared subspace learning[J]. Computer Engineering and Applications, 2017, 53(7):88-96, 170.) [10] PAN S J, TSANG I W, KWOK J T, et al. Domain adaptation via transfer component analysis[J]. IEEE Transactions on Neural Networks, 2011, 22(2):199-210. [11] DUAN L, XU D, CHANG S F. Exploiting web images for event recognition in consumer videos:a multiple source domain adaptation approach[C]//Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2012:1338-1345. [12] TOMMASI T, ORABONA F, CAPUTO B. Learning categories from few examples with multi model knowledge transfer[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(5):928-941. [13] GHIFARY M, BALDUZZI D, KLEIJIN W B, et al. Scatter component analysis:a unified framework for domain adaptation and domain generalization[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(7):1414-1430. [14] GENDREAU M, HERTZ A, LAPORTE G. A tabu search heuristic for the vehicle routing problem[J]. Management Science, 1994, 40(10):1276-1289. [15] BAY H, ESS A, TUYTELAARS T, et al. Speeded-Up Robust Features(SURF)[J]. Computer Vision and Image Understanding, 2008, 110(3):346-359. [16] SMEATON A, OVER P, DOHERTY A R, et al. Video shot boundary detection:Seven years of TRECVid activity[J]. Computer Vision and Image Understanding, 2010, 114(4):411-418. [17] OLIVA A, TORRALBA A. Modeling the shape of the scene:a holistic representation of the spatial envelope[J]. International Journal of Computer Version, 2001, 42(3):145-175. |