[1] LIAO T W. Clustering of time series data-a survey[J]. Pattern Recognition, 2005, 38(11):1857-1874. [2] CHANDRA B, GUPTA M, GUPTA M P. A multivariate time series clustering approach for crime trends prediction[C]//Proceedings of the 2008 IEEE International Conference on Systems, Man & Cybernetics. Piscataway, NJ:IEEE, 2008:892-896. [3] 李海林.基于变量相关性的多元时间序列特征表示[J].控制与决策,2015,30(3):441-447.(LI H L. Feature representation of multivariate time series based on correlation among variables[J]. Control and Decision, 2015,,30(3):441-447.) [4] PLANT C, WOHLSCHLAGER A M, ZHERDIN A. Interaction-based clustering of multivariate time series[C]//Proceedings of the 9th IEEE International Conference on Data Mining. Washington, DC:IEEE Computer Society, 2009:914-919. [5] WANG X Z, WIRTH A, WANG L. Structure-based statistical features and multivariate time series clustering[C]//Proceedings of the 2007 IEEE International Conference on Data Mining. Piscataway, NJ:IEEE, 2007:351-360. [6] SUN J. Clustering multivariate time series based on Riemannian manifold[J]. Electronics Letters, 2016, 52(19):1607-1609. [7] ZHOU P Y, CHAN K C C. A model-based multivariate time series clustering algorithm[C]//Proceedings of the 2014 International Workshops Trends and Applications in Knowledge Discovery and Data Mining, LNCS 8643. Berlin:Springer, 2014:805-817. [8] KEOGH E. Exact indexing of dynamic time warping[J]. Knowledge and Information Systems, 2005, 7(3):358-386. [9] YE L, KEOGH E. Time series shapelets:a new primitive for data mining[C]//KDD 2009:Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. New York:ACM, 2009:947-956. [10] WONG A K C, WU B, WU G P K, et al. Pattern discovery for large mixed-mode database[C]//CIKM 2010:Proceedings of the 19th ACM International Conference on Information & Knowledge Management. New York:ACM, 2010:859-868. [11] LIU L, WONG A K C, WANG Y. A global optimal algorithm for class-dependent discretization of continuous data[J]. Intelligent Data Analysis, 2004, 8(2):151-170. [12] PETITJEAN F, KETTERLIN A, GANCARSKI P. A global averaging method for dynamic time warping, with applications to clustering[J]. Pattern Recognition, 2011, 44(3):678-693. |