Journal of Computer Applications ›› 2021, Vol. 41 ›› Issue (12): 3652-3657.DOI: 10.11772/j.issn.1001-9081.2021040699
• Advanced computing • Previous Articles Next Articles
Shuicong LIAO1(), Peng SUN1, Xingchen LIU2, Yun ZHONG3
Received:
2021-05-06
Revised:
2021-06-16
Accepted:
2021-06-18
Online:
2021-12-28
Published:
2021-12-10
Contact:
Shuicong LIAO
About author:
SUN Peng, born in 1972, Ph. D., professor. His research interests include command information system, command decision and analysis.通讯作者:
廖水聪
作者简介:
孙鹏(1972—),男,河北安平人,教授,博士,主要研究方向:指挥信息系统、指挥决策与分析CLC Number:
Shuicong LIAO, Peng SUN, Xingchen LIU, Yun ZHONG. Service composition optimization based on improved krill herd algorithm[J]. Journal of Computer Applications, 2021, 41(12): 3652-3657.
廖水聪, 孙鹏, 刘星辰, 钟贇. 基于改进磷虾群算法的服务组合优化[J]. 《计算机应用》唯一官方网站, 2021, 41(12): 3652-3657.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021040699
QoS属性 | 顺序 | 并行 | 选择 | 循环 |
---|---|---|---|---|
响应时间t | ||||
服务费用c | ||||
可用性ava | ||||
可靠性rel |
Tab. 1 Calculation formulas of composite service QoS under different structures
QoS属性 | 顺序 | 并行 | 选择 | 循环 |
---|---|---|---|---|
响应时间t | ||||
服务费用c | ||||
可用性ava | ||||
可靠性rel |
算法 | 参数设置 |
---|---|
PRKH | 磷虾数=25, |
KH | |
RKH | |
PKH | |
PSO | 粒子规模 自学习因子 |
ABC | 种群规模 蜜源停留次数限制 |
FPA | 种群规模 |
Tab. 2 Parameter setting of each algorithm
算法 | 参数设置 |
---|---|
PRKH | 磷虾数=25, |
KH | |
RKH | |
PKH | |
PSO | 粒子规模 自学习因子 |
ABC | 种群规模 蜜源停留次数限制 |
FPA | 种群规模 |
算法 | 标准差 | 算法 | 标准差 |
---|---|---|---|
PRKH | 0.006 74 | PKH | 0.007 85 |
RKH | 0.008 11 | KH | 0.007 70 |
Tab. 3 Standard deviations of best fitness values of PRKH, RKH, PKH and KH
算法 | 标准差 | 算法 | 标准差 |
---|---|---|---|
PRKH | 0.006 74 | PKH | 0.007 85 |
RKH | 0.008 11 | KH | 0.007 70 |
算法 | 标准差 | 算法 | 标准差 |
---|---|---|---|
PRKH | 0.007 38 | ABC | 0.004 37 |
PSO | 0.004 54 | FPA | 0.002 78 |
Tab. 4 Standard deviation of best fitness values of PRKH, PSO, ABC and FPA
算法 | 标准差 | 算法 | 标准差 |
---|---|---|---|
PRKH | 0.007 38 | ABC | 0.004 37 |
PSO | 0.004 54 | FPA | 0.002 78 |
1 | BOUZARY H, CHEN F F. A classification-based approach for integrated service matching and composition in cloud manufacturing[J]. Robotics and Computer-Integrated Manufacturing, 2020, 66: No.101989. 10.1016/j.rcim.2020.101989 |
2 | YAGHOUBI M, MAROOSI A. Simulation and modeling of an improved multi-verse optimization algorithm for QoS-aware web service composition with service level agreements in the cloud environments[J]. Simulation Modelling Practice and Theory, 2020, 103: No.102090. 10.1016/j.simpat.2020.102090 |
3 | 张苑蕾,邵清,李刘静,等. 融合遗传聚类的可靠Web服务组合优化方法[J]. 小型微型计算机系统, 2020, 41(5):1030-1035. 10.3969/j.issn.1000-1220.2020.05.021 |
ZHANG Y L, SHAO Q, LI L J, et al. Reliable Web service composition optimization method based on genetic clustering[J]. Journal of Chinese Computer Systems, 2020, 41(5):1030-1035. 10.3969/j.issn.1000-1220.2020.05.021 | |
4 | DU M M. An improved genetic algorithm for Web service composition optimization[J]. World Scientific Research Journal, 2020, 6(10):369-379. |
5 | 夏亚梅,程渤,陈俊亮,等. 基于改进蚁群算法的服务组合优化[J]. 计算机学报, 2012, 35(2):2270-2281. 10.3724/SP.J.1016.2012.00270 |
XIA Y M, CHENG B, CHEN J L, et al. Optimizing services composition based on improved ant colony algorithm[J]. Chinese Journal of Computers, 2012, 35(2):270-281. 10.3724/SP.J.1016.2012.00270 | |
6 | YANG Y F, YANG B, WANG S L, et al. A dynamic ant-colony genetic algorithm for cloud service composition optimization[J]. The International Journal of Advanced Manufacturing Technology, 2019, 102(1/2/3/4):355-368. 10.1007/s00170-018-03215-7 |
7 | 温涛,盛国军,郭权,等. 基于改进粒子群算法的Web服务组合[J]. 计算机学报, 2013, 36(5):1031-1046. 10.3724/SP.J.1016.2013.01031 |
WEN T, SHENG G J, GUO Q, et al. Web service composition based on modified particle swarm optimization[J]. Chinese Journal of Computers, 2013, 36(5):1031-1046. 10.3724/SP.J.1016.2013.01031 | |
8 | 郭星,陈姗姗,张以文,等. 烟花粒子群优化算法在Web服务组合上的应用[J]. 小型微型计算机系统, 2018, 39(6):1312-1316. 10.3969/j.issn.1000-1220.2018.06.035 |
GUO X, CHEN S S, ZHANG Y W, et al. Application of fireworks particle swarm optimization algorithm in Web service composition[J]. Journal of Chinese Computer Systems, 2018, 39(6):1312-1316. 10.3969/j.issn.1000-1220.2018.06.035 | |
9 | 宋航,王亚丽,刘国奇,等. 基于改进多目标蜂群算法的Web服务组合优化方法[J]. 东北大学学报(自然科学版), 2019, 40(6):777-782. 10.12068/j.issn.1005-3026.2019.06.004 |
SONG H, WANG Y L, LIU G Q, et al. Web service composition optimization method based on improved multi-objective artificial bee colony algorithm[J]. Journal of Northeastern University (Natural Science), 2019, 40(6):777-782. 10.12068/j.issn.1005-3026.2019.06.004 | |
10 | SEGHIR F, KHABABA A, SEMCHEDINE F. An interval-based multi-objective artificial bee colony algorithm for solving the web service composition under uncertain QoS[J]. The Journal of Supercomputing, 2019, 75(9):5622-5666. 10.1007/s11227-019-02814-9 |
11 | GANDOMI A H, ALAVI A H. Krill herd: a new bio-inspired optimization algorithm[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(12):4831-4845. 10.1016/j.cnsns.2012.05.010 |
12 | 沈莹,黄樟灿,谈庆,等. 基于动态压力控制算子的磷虾群算法[J]. 计算机应用, 2019, 39(3):663-667. 10.11772/j.issn.1001-9081.2018081661 |
SHEN Y, HUANG Z C, TAN Q, et al. Krill herd algorithm based on dynamic pressure control operator[J]. Journal of Computer Applications, 2019, 39(3):663-667. 10.11772/j.issn.1001-9081.2018081661 | |
13 | WANG G G, GUO L H, GANDOMI A H, et al. Simulated annealing-based krill herd algorithm for global optimization[J]. Abstract and Applied Analysis, 2013, 2013: No.213853. 10.1155/2013/213853 |
14 | WANG G G, GUO L H, WANG H Q, et al. Incorporating mutation scheme into krill herd algorithm for global numerical optimization[J]. Neural Computing and Applications, 2014, 24(3/4):853-871. 10.1007/s00521-012-1304-8 |
15 | LI L L, ZHOU Y Q, XIE J. A free search krill herd algorithm for functions optimization[J]. Mathematical Problems in Engineering, 2014, 2014: No.936374. 10.1155/2014/936374 |
16 | 丁成,王秋萍,王晓峰. 基于广义反向学习的磷虾群算法及其在数据聚类中的应用[J]. 计算机应用, 2019, 39(2):336-342. 10.11772/j.issn.1001-9081.2018061437 |
DING C, WANG Q P, WANG X F. Krill herd algorithm based on generalized opposition-based learning and its application in data clustering[J]. Journal of Computer Applications, 2019, 39(2):336-342. 10.11772/j.issn.1001-9081.2018061437 | |
17 | 任子武,伞冶. 自适应遗传算法的改进及在系统辨识中应用研究[J].系统仿真学报, 2006, 18(1):41-43, 66. 10.3969/j.issn.1004-731X.2006.01.011 |
REN Z W, SAN Y. Improved adaptive genetic algorithm and its application research in parameter identification[J]. Journal of System Simulation, 2006, 18(1):41-43, 66. 10.3969/j.issn.1004-731X.2006.01.011 |
[1] | Sheng YE, Jing WANG, Jianfeng XIN, Guiling WANG, Chenhong GUO. Dynamic evolution method for microservice composition systems in cloud-edge environment [J]. Journal of Computer Applications, 2023, 43(6): 1696-1704. |
[2] | Yumei CHEN, Hongchao HU, Yawen WANG. Quality of service and loss evaluation method for multi-variant system [J]. Journal of Computer Applications, 2023, 43(3): 876-884. |
[3] | WU Renbiao, ZHANG Zhenchi, JIA Yunfei, QIAO Han. Adaptive scheduling strategy based on deadline under cloud platform [J]. Journal of Computer Applications, 2023, 43(1): 176-184. |
[4] | Xuemin XU, Xiuguo ZHANG, Yuanyuan XIAO, Zhiying CAO. Large-scale Web service composition based on optimized grey wolf optimizer [J]. Journal of Computer Applications, 2022, 42(10): 3162-3169. |
[5] | ZHAO Qiuyun, WEI Le, SHU Hongping. Construction method of cloud manufacturing virtual workshop for manufacturing tasks [J]. Journal of Computer Applications, 2021, 41(7): 2003-2011. |
[6] | ZHOU Shuo, QIU Runhe, TANG Minjun. Power allocation algorithm for CR-NOMA system based on tabu search and Q-learning [J]. Journal of Computer Applications, 2021, 41(7): 2026-2032. |
[7] | Ying LEI, Wanbo ZHENG, Wei WEI, Yunni XIA, Xiaobo LI, Chengwu LIU, Hong XIE. Task offloading method based on probabilistic performance awareness and evolutionary game strategy in “cloud + edge” hybrid environment [J]. Journal of Computer Applications, 2021, 41(11): 3302-3308. |
[8] | GUO Shujie, LI Zhihua, LIN Kaiqing. Fuzzy membership degree based virtual machine placement algorithmin cloud environment [J]. Journal of Computer Applications, 2020, 40(5): 1374-1381. |
[9] | LUO Chiwei, QU Tao, DENG Dexiang. Rate adaption algorithm for embedded multi-channel wireless video transmission [J]. Journal of Computer Applications, 2020, 40(4): 1119-1126. |
[10] | LIU Huijian, LIU Junsong, WANG Jiawei, XUE Gang. Service composition partitioning method based on process partitioning technology [J]. Journal of Computer Applications, 2020, 40(3): 799-805. |
[11] | MAO Xinyi, NIU Jun, DING Xueer, ZHANG Kaile. QoS verification of microservice composition platform based on model checking [J]. Journal of Computer Applications, 2020, 40(11): 3267-3272. |
[12] | SUN Tianqi, HU Jianpeng, HUANG Juan, FAN Ying. Bandwidth resource prediction and management of Web applications hosted on cloud [J]. Journal of Computer Applications, 2020, 40(1): 181-187. |
[13] | MEI Guang, ZOU Henghua, ZHANG Tian, XU Weisheng. SOA based education informatization driven by master data management [J]. Journal of Computer Applications, 2019, 39(9): 2675-2682. |
[14] | WANG Yan, MA Xiurong, SHAN Yunlong. Downlink resource scheduling based on weighted average delay in long term evolution system [J]. Journal of Computer Applications, 2019, 39(5): 1429-1433. |
[15] | SHEN Ying, HUANG Zhangcan, TAN Qing, LIU Ning. Krill herd algorithm based on dynamic pressure control operator [J]. Journal of Computer Applications, 2019, 39(3): 663-667. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||