Journal of Computer Applications ›› 2018, Vol. 38 ›› Issue (2): 516-521.DOI: 10.11772/j.issn.1001-9081.2017071777

Previous Articles     Next Articles

Indoor localization algorithm based on feedback correction of dynamic nearest neighbors

DANG Xiaochao1,2, HEI Yili1, HAO Zhanjun1,2, LI Fenfang1   

  1. 1. College of Computer Science and Engineering, Northwest Normal University, Lanzhou Gansu 730070, China;
    2. Gansu IOT Research Center, Lanzhou Gansu 730070, China
  • Received:2017-07-19 Revised:2017-09-14 Online:2018-02-10 Published:2018-02-10
  • Supported by:
    This work is partially supported by the National Natural Science Foundation of China (61363059, 61662070, 61762079), the Science and Technology Support Program of Gansu Province (1604FKCA097), the Young Teachers' Research Ability Improvement Program for Northwest Normal University (NWNU-LKQN-13-24).

基于动态近邻反馈修正的室内定位算法

党小超1,2, 黑毅力1, 郝占军1,2, 李芬芳1   

  1. 1. 西北师范大学 计算机科学与工程学院, 兰州 730070;
    2. 甘肃省物联网工程研究中心, 兰州 730070
  • 通讯作者: 黑毅力
  • 作者简介:党小超(1963-),男,陕西韩城人,教授,硕士,CCF会员,主要研究方向:物联网、计算机网络;黑毅力(1991-),男,甘肃成县人,硕士研究生,CCF会员,主要研究方向:无线传感器网络;郝占军(1979-),男,河北邢台人,副教授,硕士,CCF会员,主要研究方向:计算机网络、无线传感器网络;李芬芳(1990-),女,甘肃兰州人,讲师,硕士,主要研究方向:无线传感器网络。
  • 基金资助:
    国家自然科学基金资助项目(61363059,61662070,61762079);甘肃省科技支撑项目(1604FKCA097);西北师范大学青年教师科研能力提升计划项目(NWNU-LKQN-13-24)。

Abstract: In order to solve the problem that the accuracy of indoor localization algorithm based on Received Signal Strength Indicator (RSSI) for Wireless Sensor Network (WSN) is easy to be influenced by channel interference and environment, a new indoor localization algorithm, namely FC-DNN, was proposed based on Feedback Correction of Dynamic Nearest Neighbors. Firstly, the minimum localization region was determined by partitioning the whole environment based on Voronoi diagram before positioning. Then the parameters of the path loss model for each region were calculated to obtain the precise distance between nodes. Finally, the Spearman rank correlation coefficient was introduced to select neighbor anchor nodes dynamically, and the feedback of neighbor anchor nodes was used to further improve the localization accuracy. The simulation results confirm that the proposed FC-DNN algorithm has low time complexity, small computation and low energy consumption; furthermore, compared with conventional Distance Difference Localization Algorithm (DDLA) based on RSSI and sensor network localization in COnstrained 3-D spaces (CO-3D), the average positioning error is reduced by about 15 percentage points, which can well meet the requirements of indoor localization.

Key words: Wireless Sensor Network (WSN), indoor node localization, feedback correction, Voronoi diagram, Spearman coefficient, localization accuracy

摘要: 针对目前无线传感器网络(WSN)室内接收信号强度(RSSI)测距算法中RSSI易受到信道干扰和传播环境影响从而导致定位精度低的问题,提出一种动态近邻反馈修正的室内定位优化算法FC-DNN,以实现无线传感器室内节点精确定位。首先,通过对环境进行Voronoi图分割确定最小定位区域;然后计算每个区域的路径损耗模型参数得到节点间的精确距离;最后利用Spearman等级相关系数动态选择邻居锚节点,根据邻节点反馈修正进一步提高未知节点的定位精度。仿真结果表明,FC-DNN算法复杂度低、计算开销小、能耗较低,与典型的RSSI测距差分修正定位算法(DDLA)和受限三维空间传感器定位算法(CO-3D)相比,节点的平均定位误差降低了约15个百分点,能够很好地满足室内环境定位要求。

关键词: 无线传感器网络, 室内节点定位, 反馈修正, Voronoi图, Spearman系数, 定位精度

CLC Number: