Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (9): 2845-2854.DOI: 10.11772/j.issn.1001-9081.2022081270
• Advanced computing • Previous Articles Next Articles
Dahai LI, Meixin ZHAN(), Zhendong WANG
Received:
2022-08-26
Revised:
2022-10-23
Accepted:
2022-11-03
Online:
2023-01-11
Published:
2023-09-10
Contact:
Meixin ZHAN
About author:
LI Dahai, born in 1975, Ph. D., associate professor. His research interests include intelligent optimization algorithm, reinforcement learning.Supported by:
通讯作者:
詹美欣
作者简介:
李大海(1975—),男,山东乳山人,副教授,博士,CCF会员,主要研究方向:智能优化算法、强化学习基金资助:
CLC Number:
Dahai LI, Meixin ZHAN, Zhendong WANG. Enhanced sparrow search algorithm based on multiple improvement strategies[J]. Journal of Computer Applications, 2023, 43(9): 2845-2854.
李大海, 詹美欣, 王振东. 基于多个改进策略的增强麻雀搜索算法[J]. 《计算机应用》唯一官方网站, 2023, 43(9): 2845-2854.
Add to citation manager EndNote|Ris|BibTeX
URL: http://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022081270
规则序号 | 模糊规则 |
---|---|
1 | If (iteration is Early) and (diversity is Low) then (PD is Very_Big) (1) |
2 | If (iteration is Early) and (diversity is Medium) then (PD is Big) (1) |
3 | If (iteration is Early) and (diversity is High) then (PD is Medium) (1) |
4 | If (iteration is Medium) and (diversity is Low) then (PD is Big) (1) |
5 | If (iteration is Medium) and (diversity is Medium) then (PD is Medium) (1) |
6 | If (iteration is Medium) and (diversity is High) then (PD is Small) (1) |
7 | If (iteration is Late) and (diversity is Low) then (PD is Medium) (1) |
8 | If (iteration is Late) and (diversity is Medium) then (PD is Small) (1) |
9 | If (iteration is Late) and (diversity is High) then (PD is Very_Small) (1) |
Tab. 1 Fuzzy rules
规则序号 | 模糊规则 |
---|---|
1 | If (iteration is Early) and (diversity is Low) then (PD is Very_Big) (1) |
2 | If (iteration is Early) and (diversity is Medium) then (PD is Big) (1) |
3 | If (iteration is Early) and (diversity is High) then (PD is Medium) (1) |
4 | If (iteration is Medium) and (diversity is Low) then (PD is Big) (1) |
5 | If (iteration is Medium) and (diversity is Medium) then (PD is Medium) (1) |
6 | If (iteration is Medium) and (diversity is High) then (PD is Small) (1) |
7 | If (iteration is Late) and (diversity is Low) then (PD is Medium) (1) |
8 | If (iteration is Late) and (diversity is Medium) then (PD is Small) (1) |
9 | If (iteration is Late) and (diversity is High) then (PD is Very_Small) (1) |
函数 | 函数名 | F* |
---|---|---|
f1 | Sphere Function | -1 400 |
f2 | Rotated Bent Cigar Function | -1 200 |
f3 | Rotated Discus Function | -1 100 |
f4 | Different Powers Function | -1 000 |
f5 | Rotated Rosenbrock’s Function | -900 |
f6 | Rotated Ackley’s Function | -700 |
f7 | Rotated Rastrigin’s function | -300 |
f8 | Non-Continuous RotatedRastrigin’s Function | -200 |
f9 | Expanded Scaffer’s F6 Function | 600 |
f10 | Composition Function 3 | 900 |
f11 | Composition Function 6 | 1 200 |
f12 | Composition Function 8 | 1 400 |
Tab. 2 Test functions
函数 | 函数名 | F* |
---|---|---|
f1 | Sphere Function | -1 400 |
f2 | Rotated Bent Cigar Function | -1 200 |
f3 | Rotated Discus Function | -1 100 |
f4 | Different Powers Function | -1 000 |
f5 | Rotated Rosenbrock’s Function | -900 |
f6 | Rotated Ackley’s Function | -700 |
f7 | Rotated Rastrigin’s function | -300 |
f8 | Non-Continuous RotatedRastrigin’s Function | -200 |
f9 | Expanded Scaffer’s F6 Function | 600 |
f10 | Composition Function 3 | 900 |
f11 | Composition Function 6 | 1 200 |
f12 | Composition Function 8 | 1 400 |
函数 | 指标 | EMISSA | SSA | CSSOA | MSSSA | ISSA | ESSA |
---|---|---|---|---|---|---|---|
f1 | Mean | 9.73E+00 | 2.23E+04 | 1.86E+04 | 4.80E+01 | 1.01E+01 | 6.89E+04 |
Std | 5.07E+00 | 6.38E+03 | 5.81E+03 | 2.38E+01 | 1.28E+01 | 7.21E+02 | |
Rank | 1 | 5 | 4 | 3 | 2 | 6 | |
f2 | Mean | 1.55E+10 | 2.13E+15 | 6.09E+13 | 2.55E+10 | 1.75E+10 | 1.62E+21 |
Std | 5.38E+09 | 7.42E+15 | 1.06E+14 | 1.86E+10 | 9.28E+09 | 4.30E+21 | |
Rank | 1 | 5 | 4 | 3 | 2 | 6 | |
f3 | Mean | 3.39E+04 | 6.04E+04 | 5.54E+04 | 6.00E+04 | 4.53E+04 | 6.94E+04 |
Std | 6.35E+03 | 5.52E+03 | 6.17E+03 | 4.71E+03 | 7.64E+03 | 5.84E+02 | |
Rank | 1 | 5 | 3 | 4 | 2 | 6 | |
f4 | Mean | 4.82E+01 | 6.90E+03 | 4.42E+03 | 1.69E+02 | 1.25E+02 | 3.91E+04 |
Std | 2.84E+01 | 2.97E+03 | 1.15E+03 | 3.54E+01 | 4.45E+01 | 1.81E+04 | |
Rank | 1 | 5 | 4 | 3 | 2 | 6 | |
f5 | Mean | 1.36E+02 | 2.45E+03 | 2.11E+03 | 1.43E+02 | 1.67E+02 | 1.95E+04 |
Std | 2.86E+01 | 8.61E+02 | 1.32E+03 | 3.84E+01 | 4.47E+01 | 4.65E+03 | |
Rank | 1 | 5 | 4 | 2 | 3 | 6 | |
f6 | Mean | 2.10E+01 | 2.10E+01 | 2.10E+01 | 2.10E+01 | 2.10E+01 | 2.10E+01 |
Std | 3.86E-02 | 6.05E-02 | 5.20E-02 | 5.95E-02 | 4.70E-02 | 7.81E-02 | |
Rank | 1 | 5 | 3 | 4 | 2 | 6 | |
f7 | Mean | 4.35E+02 | 8.52E+02 | 5.08E+02 | 8.97E+02 | 8.76E+02 | 1.13E+03 |
Std | 1.06E+02 | 1.38E+02 | 1.10E+02 | 1.05E+02 | 1.01E+02 | 3.38E+01 | |
Rank | 1 | 3 | 2 | 5 | 4 | 6 | |
f8 | Mean | 5.02E+02 | 1.00E+03 | 6.37E+02 | 8.79E+02 | 9.13E+02 | 1.08E+03 |
Std | 7.10E+01 | 1.16E+02 | 9.24E+01 | 1.37E+02 | 1.56E+02 | 6.85E+01 | |
Rank | 1 | 5 | 2 | 3 | 4 | 6 | |
f9 | Mean | 1.44E+01 | 1.50E+01 | 1.40E+01 | 1.50E+01 | 1.50E+01 | 1.50E+01 |
Std | 5.09E-01 | 9.15E-02 | 5.56E-01 | 8.34E-02 | 0.00E+00 | 4.79E-09 | |
Rank | 2 | 6 | 1 | 5 | 3 | 4 | |
f10 | Mean | 6.35E+03 | 6.85E+03 | 6.60E+03 | 7.00E+03 | 7.23E+03 | 9.43E+03 |
Std | 9.26E+02 | 8.62E+02 | 8.13E+02 | 8.44E+02 | 5.60E+02 | 4.10E+02 | |
Rank | 1 | 3 | 2 | 4 | 5 | 6 | |
f11 | Mean | 2.43E+02 | 4.05E+02 | 3.44E+02 | 4.08E+02 | 4.33E+02 | 4.57E+02 |
Std | 7.51E+01 | 6.63E+01 | 9.58E+01 | 9.70E+00 | 1.63E+02 | 4.66E+01 | |
Rank | 1 | 34 | 2 | 4 | 5 | 6 | |
f12 | Mean | 4.40E+03 | 7.15E+03 | 4.49E+03 | 6.09E+03 | 5.71E+03 | 8.20E+03 |
Std | 4.63E+02 | 1.31E+03 | 7.24E+02 | 9.06E+02 | 4.14E+02 | 1.10E+03 | |
Rank | 1 | 5 | 2 | 4 | 3 | 6 | |
Count | 11 | 0 | 1 | 0 | 0 | 0 | |
Ave Rank | 1.29 | 4.33 | 2.79 | 3.58 | 3.33 | 5.67 | |
Total Rank | 1 | 5 | 2 | 4 | 3 | 6 |
Tab. 3 Comparison of results of different algorithms with 30 dimensions
函数 | 指标 | EMISSA | SSA | CSSOA | MSSSA | ISSA | ESSA |
---|---|---|---|---|---|---|---|
f1 | Mean | 9.73E+00 | 2.23E+04 | 1.86E+04 | 4.80E+01 | 1.01E+01 | 6.89E+04 |
Std | 5.07E+00 | 6.38E+03 | 5.81E+03 | 2.38E+01 | 1.28E+01 | 7.21E+02 | |
Rank | 1 | 5 | 4 | 3 | 2 | 6 | |
f2 | Mean | 1.55E+10 | 2.13E+15 | 6.09E+13 | 2.55E+10 | 1.75E+10 | 1.62E+21 |
Std | 5.38E+09 | 7.42E+15 | 1.06E+14 | 1.86E+10 | 9.28E+09 | 4.30E+21 | |
Rank | 1 | 5 | 4 | 3 | 2 | 6 | |
f3 | Mean | 3.39E+04 | 6.04E+04 | 5.54E+04 | 6.00E+04 | 4.53E+04 | 6.94E+04 |
Std | 6.35E+03 | 5.52E+03 | 6.17E+03 | 4.71E+03 | 7.64E+03 | 5.84E+02 | |
Rank | 1 | 5 | 3 | 4 | 2 | 6 | |
f4 | Mean | 4.82E+01 | 6.90E+03 | 4.42E+03 | 1.69E+02 | 1.25E+02 | 3.91E+04 |
Std | 2.84E+01 | 2.97E+03 | 1.15E+03 | 3.54E+01 | 4.45E+01 | 1.81E+04 | |
Rank | 1 | 5 | 4 | 3 | 2 | 6 | |
f5 | Mean | 1.36E+02 | 2.45E+03 | 2.11E+03 | 1.43E+02 | 1.67E+02 | 1.95E+04 |
Std | 2.86E+01 | 8.61E+02 | 1.32E+03 | 3.84E+01 | 4.47E+01 | 4.65E+03 | |
Rank | 1 | 5 | 4 | 2 | 3 | 6 | |
f6 | Mean | 2.10E+01 | 2.10E+01 | 2.10E+01 | 2.10E+01 | 2.10E+01 | 2.10E+01 |
Std | 3.86E-02 | 6.05E-02 | 5.20E-02 | 5.95E-02 | 4.70E-02 | 7.81E-02 | |
Rank | 1 | 5 | 3 | 4 | 2 | 6 | |
f7 | Mean | 4.35E+02 | 8.52E+02 | 5.08E+02 | 8.97E+02 | 8.76E+02 | 1.13E+03 |
Std | 1.06E+02 | 1.38E+02 | 1.10E+02 | 1.05E+02 | 1.01E+02 | 3.38E+01 | |
Rank | 1 | 3 | 2 | 5 | 4 | 6 | |
f8 | Mean | 5.02E+02 | 1.00E+03 | 6.37E+02 | 8.79E+02 | 9.13E+02 | 1.08E+03 |
Std | 7.10E+01 | 1.16E+02 | 9.24E+01 | 1.37E+02 | 1.56E+02 | 6.85E+01 | |
Rank | 1 | 5 | 2 | 3 | 4 | 6 | |
f9 | Mean | 1.44E+01 | 1.50E+01 | 1.40E+01 | 1.50E+01 | 1.50E+01 | 1.50E+01 |
Std | 5.09E-01 | 9.15E-02 | 5.56E-01 | 8.34E-02 | 0.00E+00 | 4.79E-09 | |
Rank | 2 | 6 | 1 | 5 | 3 | 4 | |
f10 | Mean | 6.35E+03 | 6.85E+03 | 6.60E+03 | 7.00E+03 | 7.23E+03 | 9.43E+03 |
Std | 9.26E+02 | 8.62E+02 | 8.13E+02 | 8.44E+02 | 5.60E+02 | 4.10E+02 | |
Rank | 1 | 3 | 2 | 4 | 5 | 6 | |
f11 | Mean | 2.43E+02 | 4.05E+02 | 3.44E+02 | 4.08E+02 | 4.33E+02 | 4.57E+02 |
Std | 7.51E+01 | 6.63E+01 | 9.58E+01 | 9.70E+00 | 1.63E+02 | 4.66E+01 | |
Rank | 1 | 34 | 2 | 4 | 5 | 6 | |
f12 | Mean | 4.40E+03 | 7.15E+03 | 4.49E+03 | 6.09E+03 | 5.71E+03 | 8.20E+03 |
Std | 4.63E+02 | 1.31E+03 | 7.24E+02 | 9.06E+02 | 4.14E+02 | 1.10E+03 | |
Rank | 1 | 5 | 2 | 4 | 3 | 6 | |
Count | 11 | 0 | 1 | 0 | 0 | 0 | |
Ave Rank | 1.29 | 4.33 | 2.79 | 3.58 | 3.33 | 5.67 | |
Total Rank | 1 | 5 | 2 | 4 | 3 | 6 |
函数 | 指标 | EMISSA | SSA | CSSOA | MSSSA | ISSA | ESSA |
---|---|---|---|---|---|---|---|
f1 | Mean | 2.05E+03 | 1.15E+05 | 1.15E+05 | 2.18E+04 | 5.78E+03 | 1.54E+05 |
Std | 4.03E+02 | 8.18E+03 | 8.76E+03 | 6.00E+03 | 3.35E+03 | 4.55E+02 | |
Rank | 1 | 4 | 5 | 3 | 2 | 6 | |
f2 | Mean | 7.76E+10 | 8.40E+20 | 3.19E+18 | 2.95E+13 | 1.18E+12 | 1.38E+24 |
Std | 3.19E+10 | 2.11E+21 | 6.43E+18 | 7.18E+13 | 2.60E+12 | 8.43E+23 | |
Rank | 1 | 5 | 4 | 3 | 2 | 6 | |
f3 | Mean | 1.03E+05 | 2.07E+05 | 1.64E+05 | 3.44E+05 | 1.06E+05 | 2.02E+05 |
Std | 1.46E+04 | 1.62E+04 | 1.52E+04 | 5.52E+04 | 3.87E+04 | 3.18E+04 | |
Rank | 1 | 5 | 3 | 6 | 2 | 4 | |
f4 | Mean | 5.60E+02 | 3.63E+04 | 2.29E+04 | 2.74E+03 | 8.72E+02 | 8.47E+04 |
Std | 2.04E+02 | 9.84E+03 | 2.97E+03 | 7.76E+02 | 2.73E+02 | 2.86E+03 | |
Rank | 1 | 5 | 4 | 3 | 2 | 6 | |
f5 | Mean | 6.12E+02 | 2.45E+04 | 1.99E+04 | 2.43E+03 | 6.67E+02 | 4.48E+04 |
Std | 1.11E+02 | 3.17E+03 | 2.81E+03 | 7.45E+02 | 1.28E+02 | 3.64E+02 | |
Rank | 1 | 5 | 4 | 3 | 2 | 6 | |
f6 | Mean | 2.10E+01 | 2.12E+01 | 2.12E+01 | 2.13E+01 | 2.12E+01 | 2.12E+01 |
Std | 7.09E-02 | 3.21E-02 | 2.67E-02 | 3.53E-02 | 3.98E-02 | 4.80E-02 | |
Rank | 1 | 3 | 2 | 6 | 4 | 5 | |
f7 | Mean | 1.54E+03 | 2.33E+03 | 1.92E+03 | 2.11E+03 | 1.80E+03 | 2.62E+03 |
Std | 5.30E+01 | 8.01E+01 | 1.36E+02 | 6.61E+01 | 9.57E+01 | 1.71E+01 | |
Rank | 1 | 5 | 3 | 4 | 2 | 6 | |
f8 | Mean | 2.05E+03 | 2.54E+03 | 2.20E+03 | 2.39E+03 | 2.10E+03 | 2.63E+03 |
Std | 1.58E+02 | 9.75E+01 | 1.85E+02 | 9.58E+01 | 1.49E+02 | 9.33E+01 | |
Rank | 1 | 5 | 3 | 4 | 2 | 6 | |
f9 | Mean | 3.81E+01 | 3.89E+01 | 3.83E+01 | 3.86E+01 | 3.86E+01 | 3.92E+01 |
Std | 6.14E-01 | 3.70E-01 | 2.22E-01 | 3.60E-01 | 3.68E-01 | 1.85E-01 | |
Rank | 1 | 5 | 2 | 3 | 4 | 6 | |
f10 | Mean | 2.04E+04 | 2.35E+04 | 2.33E+04 | 2.30E+04 | 2.54E+04 | 2.88E+04 |
Std | 1.01E+03 | 1.68E+03 | 2.02E+03 | 2.56E+03 | 1.91E+03 | 1.13E+03 | |
Rank | 1 | 4 | 3 | 2 | 5 | 6 | |
f11 | Mean | 2.25E+02 | 9.49E+02 | 6.52E+02 | 6.54E+02 | 5.77E+02 | 2.34E+03 |
Std | 8.38E+01 | 9.32E+02 | 1.97E+01 | 2.24E+01 | 1.58E+02 | 1.38E+03 | |
Rank | 1 | 5 | 3 | 4 | 2 | 6 | |
f12 | Mean | 1.36E+04 | 2.30E+04 | 2.00E+04 | 2.21E+04 | 1.78E+04 | 2.36E+04 |
Std | 8.69E+02 | 1.71E+03 | 1.44E+03 | 2.25E+03 | 1.62E+03 | 1.40E+03 | |
Rank | 1 | 5 | 3 | 4 | 2 | 6 | |
Count | 12 | 0 | 0 | 0 | 0 | 0 | |
Ave Rank | 1.00 | 4.75 | 3.33 | 3.79 | 2.50 | 5.63 | |
Total Rank | 1 | 5 | 3 | 4 | 2 | 6 |
Tab. 4 Comparison of results of different algorithms with 80 dimensions
函数 | 指标 | EMISSA | SSA | CSSOA | MSSSA | ISSA | ESSA |
---|---|---|---|---|---|---|---|
f1 | Mean | 2.05E+03 | 1.15E+05 | 1.15E+05 | 2.18E+04 | 5.78E+03 | 1.54E+05 |
Std | 4.03E+02 | 8.18E+03 | 8.76E+03 | 6.00E+03 | 3.35E+03 | 4.55E+02 | |
Rank | 1 | 4 | 5 | 3 | 2 | 6 | |
f2 | Mean | 7.76E+10 | 8.40E+20 | 3.19E+18 | 2.95E+13 | 1.18E+12 | 1.38E+24 |
Std | 3.19E+10 | 2.11E+21 | 6.43E+18 | 7.18E+13 | 2.60E+12 | 8.43E+23 | |
Rank | 1 | 5 | 4 | 3 | 2 | 6 | |
f3 | Mean | 1.03E+05 | 2.07E+05 | 1.64E+05 | 3.44E+05 | 1.06E+05 | 2.02E+05 |
Std | 1.46E+04 | 1.62E+04 | 1.52E+04 | 5.52E+04 | 3.87E+04 | 3.18E+04 | |
Rank | 1 | 5 | 3 | 6 | 2 | 4 | |
f4 | Mean | 5.60E+02 | 3.63E+04 | 2.29E+04 | 2.74E+03 | 8.72E+02 | 8.47E+04 |
Std | 2.04E+02 | 9.84E+03 | 2.97E+03 | 7.76E+02 | 2.73E+02 | 2.86E+03 | |
Rank | 1 | 5 | 4 | 3 | 2 | 6 | |
f5 | Mean | 6.12E+02 | 2.45E+04 | 1.99E+04 | 2.43E+03 | 6.67E+02 | 4.48E+04 |
Std | 1.11E+02 | 3.17E+03 | 2.81E+03 | 7.45E+02 | 1.28E+02 | 3.64E+02 | |
Rank | 1 | 5 | 4 | 3 | 2 | 6 | |
f6 | Mean | 2.10E+01 | 2.12E+01 | 2.12E+01 | 2.13E+01 | 2.12E+01 | 2.12E+01 |
Std | 7.09E-02 | 3.21E-02 | 2.67E-02 | 3.53E-02 | 3.98E-02 | 4.80E-02 | |
Rank | 1 | 3 | 2 | 6 | 4 | 5 | |
f7 | Mean | 1.54E+03 | 2.33E+03 | 1.92E+03 | 2.11E+03 | 1.80E+03 | 2.62E+03 |
Std | 5.30E+01 | 8.01E+01 | 1.36E+02 | 6.61E+01 | 9.57E+01 | 1.71E+01 | |
Rank | 1 | 5 | 3 | 4 | 2 | 6 | |
f8 | Mean | 2.05E+03 | 2.54E+03 | 2.20E+03 | 2.39E+03 | 2.10E+03 | 2.63E+03 |
Std | 1.58E+02 | 9.75E+01 | 1.85E+02 | 9.58E+01 | 1.49E+02 | 9.33E+01 | |
Rank | 1 | 5 | 3 | 4 | 2 | 6 | |
f9 | Mean | 3.81E+01 | 3.89E+01 | 3.83E+01 | 3.86E+01 | 3.86E+01 | 3.92E+01 |
Std | 6.14E-01 | 3.70E-01 | 2.22E-01 | 3.60E-01 | 3.68E-01 | 1.85E-01 | |
Rank | 1 | 5 | 2 | 3 | 4 | 6 | |
f10 | Mean | 2.04E+04 | 2.35E+04 | 2.33E+04 | 2.30E+04 | 2.54E+04 | 2.88E+04 |
Std | 1.01E+03 | 1.68E+03 | 2.02E+03 | 2.56E+03 | 1.91E+03 | 1.13E+03 | |
Rank | 1 | 4 | 3 | 2 | 5 | 6 | |
f11 | Mean | 2.25E+02 | 9.49E+02 | 6.52E+02 | 6.54E+02 | 5.77E+02 | 2.34E+03 |
Std | 8.38E+01 | 9.32E+02 | 1.97E+01 | 2.24E+01 | 1.58E+02 | 1.38E+03 | |
Rank | 1 | 5 | 3 | 4 | 2 | 6 | |
f12 | Mean | 1.36E+04 | 2.30E+04 | 2.00E+04 | 2.21E+04 | 1.78E+04 | 2.36E+04 |
Std | 8.69E+02 | 1.71E+03 | 1.44E+03 | 2.25E+03 | 1.62E+03 | 1.40E+03 | |
Rank | 1 | 5 | 3 | 4 | 2 | 6 | |
Count | 12 | 0 | 0 | 0 | 0 | 0 | |
Ave Rank | 1.00 | 4.75 | 3.33 | 3.79 | 2.50 | 5.63 | |
Total Rank | 1 | 5 | 3 | 4 | 2 | 6 |
维度 | EMISSA | SSA | CSSOA | MSSSA | ISSA | ESSA | P-value |
---|---|---|---|---|---|---|---|
30 | 1.29 | 4.33 | 2.79 | 3.58 | 3.33 | 5.67 | 7.50E-08 |
80 | 1.00 | 4.75 | 3.33 | 3.79 | 2.50 | 5.63 | 4.62E-09 |
Tab. 5 Comparison of Friedman test results of different algorithms
维度 | EMISSA | SSA | CSSOA | MSSSA | ISSA | ESSA | P-value |
---|---|---|---|---|---|---|---|
30 | 1.29 | 4.33 | 2.79 | 3.58 | 3.33 | 5.67 | 7.50E-08 |
80 | 1.00 | 4.75 | 3.33 | 3.79 | 2.50 | 5.63 | 4.62E-09 |
实验参数 | 参数设置 |
---|---|
部署区域 | 100 m×100 m二维平面 |
区域大小/m2 | 9 000 |
节点数量 | 28 |
感知半径/m | 12 |
障碍物类型 | 三角形、菱形 |
障碍物数量 | 5 |
种群规模 | 30 |
最大迭代次数 | 1 500 |
Tab. 6 Experimental parameter setting
实验参数 | 参数设置 |
---|---|
部署区域 | 100 m×100 m二维平面 |
区域大小/m2 | 9 000 |
节点数量 | 28 |
感知半径/m | 12 |
障碍物类型 | 三角形、菱形 |
障碍物数量 | 5 |
种群规模 | 30 |
最大迭代次数 | 1 500 |
1 | 刘小龙,李荣钧,杨萍. 基于高斯分布估计的细菌觅食优化算法[J]. 控制与决策, 2011, 26(8):1233-1238. |
LIU X L, LI R J, YANG P. Bacterial foraging optimization algorithm based on estimation of distribution[J]. Control and Decision, 2011, 26(8):1233-1238. | |
2 | YILDIZ B S, PHOLDEE N, BUREERAT S, et al. Robust design of a robot gripper mechanism using new hybrid grasshopper optimization algorithm[J]. Expert Systems, 2021, 38(3): No.e12666. 10.1111/exsy.12666 |
3 | PAUL K, DALAPATI P, KUMAR N. Optimal rescheduling of generators to alleviate congestion in transmission system: a novel modified whale optimization approach[J]. Arabian Journal for Science and Engineering, 2022, 47(3):3255-3279. 10.1007/s13369-021-06136-y |
4 | JAVIDRAD F, NAZARI M. A new hybrid particle swarm and simulated annealing stochastic optimization method[J]. Applied Soft Computing, 2017, 60: 634-654. 10.1016/j.asoc.2017.07.023 |
5 | 李长安,谢宗奎,吴忠强,等. 改进灰狼算法及其在港口泊位调度中的应用[J]. 哈尔滨工程大学学报, 2021, 53(1):101-108. |
LI C A, XIE Z K, WU Z Q, et al. Improved grey wolf algorithm and its application in port berth scheduling[J]. Journal of Harbin Institute of Technology, 2021, 53(1):101-108. | |
6 | 吴冬梅,郝凤鸣,蒋国平. 基于多智能体混沌鸟群算法的机构优化[J]. 信息与控制, 2021, 50(4):449-458. 10.13976/j.cnki.xk.2021.0381 |
WU D M, HAO F M, JIANG G P. Mechanism optimization based on multi-agent chaos bird swarm algorithm[J]. Information and Control, 2021, 50(4):449-458. 10.13976/j.cnki.xk.2021.0381 | |
7 | 河南科技大学. 基于单种群自适应异构蚁群算法的机器人路径规划方法: 202111131279.3[P]. 2021-12-31. |
Henan University of Science and Technology. Robot path planning method based on single-population adaptive heterogeneous ant colony algorithm:202111131279.3[P]. 2021-12-31. | |
8 | XUE J K, SHEN B. A novel swarm intelligence optimization approach: sparrow search algorithm[J]. Systems Science and Control Engineering, 2020, 8(1): 22-34. 10.1080/21642583.2019.1708830 |
9 | 王海瑞,鲜于建川. 改进麻雀搜索算法在分布式电源配置中的应用[J]. 计算机工程与应用, 2021, 57(20): 245-252. |
WANG H R, XIANYU J C. Application of distributed generation configuration based on improved sparrow search algorithm[J]. Computer Engineering and Applications, 2021, 57(20): 245-252. | |
10 | 江妍,马瑜,梁远哲,等. 基于分数阶麻雀搜索优化OTSU肺组织分割算法[J]. 计算机科学, 2021, 48(6A):28-32. 10.11896/jsjkx.200900176 |
JIANG Y, MA Y, LIANG Y Z, et al. Lung tissue segmentation algorithm: fractional order sparrow search optimization for OTSU[J]. Computer Science, 2021, 48(6A):28-32. 10.11896/jsjkx.200900176 | |
11 | 欧阳城添,朱东林,王丰奇,等. 基于折射麻雀搜索算法的无人机路径规划[J]. 电光与控制, 2022, 29(6): 25-31. 10.3969/j.issn.1671-637X.2022.06.006 |
OUYANG C T, ZHU D L, WANG F Q, et al. UAV path planning based on refracted sparrow search algorithm[J]. Electronics Optics and Control, 2022, 29(6): 25-31. 10.3969/j.issn.1671-637X.2022.06.006 | |
12 | 付华,刘昊. 多策略融合的改进麻雀搜索算法及其应用[J]. 控制与决策, 2022, 37(1): 87-96. |
FU H, LIU H. Improved sparrow search algorithm with multi-strategy integration and its application[J]. Control and Decision, 2022, 37(1): 87-96. | |
13 | 李爱莲,全凌翔,崔桂梅,等. 融合正余弦和柯西变异的麻雀搜索算法[J]. 计算机工程与应用, 2022, 58(3): 91-99. 10.3778/j.issn.1002-8331.2106-0148 |
LI A L, QUAN L X, CUI G M, et al. Sparrow search algorithm combining sine-cosine and Cauchy mutation[J]. Computer Engineering and Applications, 2022, 58(3): 91-99. 10.3778/j.issn.1002-8331.2106-0148 | |
14 | 王振东,汪嘉宝,李大海. 一种增强型麻雀搜索算法的无线传感器网络覆盖优化研究[J]. 传感技术学报, 2021, 34(6):818-828. 10.3969/j.issn.1004-1699.2021.06.016 |
WANG Z D, WANG J B, LI D H. Study on WSN optimization coverage of an enhanced sparrow search algorithm[J]. Chinese Journal of Sensors and Actuators, 2021, 34(6): 818-828. 10.3969/j.issn.1004-1699.2021.06.016 | |
15 | VALDEZ F, CASTILLO O, PERAZA C. Fuzzy logic in dynamic parameter adaptation of harmony search optimization for benchmark functions and fuzzy controllers[J]. International Journal of Fuzzy Systems, 2020, 22(4): 1198-1211. 10.1007/s40815-020-00860-7 |
16 | ZHAO F Q, DU S L, LU H, et al. A hybrid self-adaptive invasive weed algorithm with differential evolution[J]. Connection Science, 2021, 33(4): 929-953. 10.1080/09540091.2021.1917517 |
17 | ZHANG J Q, SANDERSON A C. JADE: adaptive differential evolution with optional external archive[J]. IEEE Transactions on Evolutionary Computation, 2009, 13(5): 945-958. 10.1109/tevc.2009.2014613 |
18 | 孙灿,周新宇,王明文. 一种融合邻域搜索的多策略差分进化算法[J]. 系统仿真学报, 2020, 32(6): 1071-1084. 10.16182/j.issn1004731x.joss.18-0787 |
SUN C, ZHOU X Y, WANG M W. A multi-strategy differential evolution algorithm combined with neighborhood search[J]. Journal of System Simulation, 2020, 32(6): 1071-1084. 10.16182/j.issn1004731x.joss.18-0787 | |
19 | DAI C Y, HU Z B, LI Z, et al. An improved grey prediction evolution algorithm based on topological opposition-based learning[J]. IEEE Access, 2020, 8: 30745-30762. 10.1109/access.2020.2973197 |
20 | 李浩君,张鹏威,郭海东. 基于种群曼哈顿距离的自适应多目标粒子群优化算法[J]. 计算机集成制造系统, 2020, 26(4):1019-1032. |
LI H J, ZHANG P W, GUO H D. Adaptive multi-objective particle swarm optimization algorithm based on population Manhattan distance[J]. Computer Integrated Manufacturing Systems, 2020, 26(4): 1019-1032. | |
21 | LIANG J J, QU B Y, SUGANTHAN P N, et al. Problem definitions and evaluation criteria for the CEC 2013 special session on real-parameter optimization[R/OL]. (2013-01) [2022-06-21].. |
22 | 张伟康,刘升,任春慧. 混合策略改进的麻雀搜索算法[J]. 计算机工程与应用, 2021, 57(24): 74-82. |
ZHANG W K, LIU S, REN C H. Mixed strategy improved sparrow search algorithm[J]. Computer Engineering and Applications, 2021, 57(24): 74-82. | |
23 | 印雷,顾德,刘飞. 基于改进麻雀搜索算法优化的DV-Hop定位算法[J]. 传感技术学报, 2021, 34(5): 670-675. 10.3969/j.issn.1004-1699.2021.05.017 |
YIN L, GU D, LIU F, Improved sparrow search algorithm based DV-Hop localization in WSN[J]. Chinese Journal of Sensors and Actuators, 2021, 34(5): 670-675. 10.3969/j.issn.1004-1699.2021.05.017 | |
24 | 张新明,姜云,刘尚旺,等. 灰狼与郊狼混合优化算法及其聚类优化[J]. 自动化学报, 2022, 48(11): 2757-2776. |
ZHANG X M, JIANG Y, LIU S W, et al. Hybrid coyote optimization algorithm with grey wolf optimizer and its application to clustering optimization[J]. Acta Automatica Sinica, 2022, 48(11): 2757-2776. | |
25 | QI X G, LI Z N, CHEN C, et al. A wireless sensor node deployment scheme based on embedded virtual force resampling particle swarm optimization algorithm[J]. Applied Intelligence, 2021, 52(7): 7420-7441. 10.1007/s10489-021-02745-0 |
26 | JIA H D, CHU S C, HU P, et al. Hybrid algorithm optimization for coverage problem in wireless sensor networks[J]. Telecommunication Systems, 2022, 80(1): 105-121. 10.1007/s11235-022-00883-5 |
27 | MIAO Y, SUN Z L, WANG N, et al. Time efficient data collection with mobile sink and vMIMO technique in wireless sensor networks[J]. IEEE Systems Journal, 2018, 12(1): 639-647. 10.1109/jsyst.2016.2597166 |
28 | 张谦. 基于群智能算法的无线传感器网络覆盖优化研究[D]. 长沙: 湖南大学, 2015. |
ZHANG Q. The research of coverage optimization in wireless sensor network based on swarm intelligent algorithm[D]. Changsha: Hunan University, 2015. | |
29 | ZOU M, PING Z, ZHENG S J, et al. A novel energy efficient converage control in WSNs based on ant colony optimization[C]// Proceedings of the 2010 International Symposium on Computer, Communication, Control and Automation. Piscataway: IEEE, 2010:523-527. 10.1109/3ca.2010.5533741 |
30 | BINH H T T, HANH N T, QUAN L van, et al. Metaheuristics for maximization of obstacles constrained area coverage in heterogeneous wireless sensor networks[J]. Applied Soft Computing, 2020, 86: No.105939. 10.1016/j.asoc.2019.105939 |
31 | 韩尧,李少华. 基于改进人工势场法的无人机航迹规划[J]. 系统工程与电子技术, 2021, 43(11): 3305-3311. 10.12305/j.issn.1001-506X.2021.11.31 |
HAN Y, LI S H. UAV path planning based on improved artificial potential field[J]. Systems Engineering and Electronics, 2021, 43(11): 3305-3311. 10.12305/j.issn.1001-506X.2021.11.31 |
[1] | Yujie ZHANG, Fan WANG. Lighting control optimization based on improved sparrow search algorithm [J]. Journal of Computer Applications, 2023, 43(3): 835-841. |
[2] | LIU Yongmin, YANG Yujin, LUO Haoyi, HUANG Hao, XIE Tieqiang. Intrusion detection method for wireless sensor network based on bidirectional circulation generative adversarial network [J]. Journal of Computer Applications, 2023, 43(1): 160-168. |
[3] | Hongliang TIAN, Jiayue WANG, Chenxi LI. Data storage scheme based on hybrid algorithm blockchain and node identity authentication [J]. Journal of Computer Applications, 2022, 42(8): 2481-2486. |
[4] | Yang LI, Long XU, Yanqiang LI, Shaopeng LI. Smart contract-based access control architecture and verification for internet of things [J]. Journal of Computer Applications, 2022, 42(6): 1922-1931. |
[5] | Bing GAO, Ya ZHENG, Jing QIN, Qijie ZOU, Zumin WANG. Network intrusion detection algorithm based on sparrow search algorithm and improved particle swarm optimization algorithm [J]. Journal of Computer Applications, 2022, 42(4): 1201-1206. |
[6] | Yuxian DUAN, Changyun LIU. Sparrow search algorithm based on Sobol sequence and crisscross strategy [J]. Journal of Computer Applications, 2022, 42(1): 36-43. |
[7] | TANG Andi, HAN Tong, XU Dengwu, XIE Lei. Path planning method of unmanned aerial vehicle based on chaos sparrow search algorithm [J]. Journal of Computer Applications, 2021, 41(7): 2128-2136. |
[8] | SUN Huan, CHEN Hongbin. Node redeployment strategy based on firefly algorithm for wireless sensor network [J]. Journal of Computer Applications, 2021, 41(2): 492-497. |
[9] | HU Runyan, LI Cuiran. Clustering algorithm of energy harvesting wireless sensor network based on fuzzy control [J]. Journal of Computer Applications, 2020, 40(9): 2691-2697. |
[10] | HAN Yulao, FANG Dingyi. Lightweight coverage hole detection algorithm based on relative position of link intersections [J]. Journal of Computer Applications, 2020, 40(9): 2698-2705. |
[11] | LU Guangyue, ZHOU Liang, LYU Shaoqing, SHI Cong, SU Keke. Outlier node detection algorithm in wireless sensor networks based ongraph signal processing [J]. Journal of Computer Applications, 2020, 40(3): 783-787. |
[12] | ZHANG Zhengwan, ZHANG Chunjiong, LI Hongbing, XIE Tao. Multipath transmission selection algorithm based on immune connectivity model [J]. Journal of Computer Applications, 2020, 40(12): 3571-3577. |
[13] | REN Xiuli, CHEN Yang. Routing protocol optimized for data transmission delay in wireless sensor networks [J]. Journal of Computer Applications, 2020, 40(1): 196-201. |
[14] | LIU Ying, WANG Fengwei, LIU Weihua, AI Da, LI Yun, YANG Fanchao. High dynamic range imaging algorithm based on luminance partition fuzzy fusion [J]. Journal of Computer Applications, 2020, 40(1): 233-238. |
[15] | DONG Fazhi, DING Hongwei, YANG Zhijun, XIONG Chengbiao, ZHANG Yingjie. WSN clustering routing algorithm based on genetic algorithm and fuzzy C-means clustering [J]. Journal of Computer Applications, 2019, 39(8): 2359-2365. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||