[1] LU L, LI G Y, SWINDLEHURST A L, et al. An overview of massive MIMO:benefits and challenges[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5):742-758. [2] RUSEK F, PERSSON D, LAU B K, et al. Scaling up MIMO:opportunities and challenges with very large arrays[J]. IEEE Signal Processing Magazine, 2012, 30(1):40-60. [3] CHOI J, LOVE D J, BIDIGARE P. Downlink training techniques for FDD massive MIMO systems:open-loop and closed-loop training with memory[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5):802-814. [4] DAI L, WANG Z, YANG Z. Spectrally efficient time-frequency training OFDM for mobile large-scale MIMO systems[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(2):251-263. [5] GAO Z, DAI L, WANG Z, et al. Spatially common sparsity based adaptive channel estimation and feedback for FDD massive MIMO[J]. IEEE Transactions on Signal Processing, 2015, 63(23):6169-6183. [6] GAO Z, DAI L, WANG Z. Structured compressive sensing based superimposed pilot design in downlink large-scale MIMO systems[J]. Electronics Letters, 2014, 50(12):896-898. [7] DAI L, WANG Z, YANG Z. Spectrally efficient time-frequency training OFDM for mobile large-scale MIMO systems[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(2):251-263. [8] 谢建超.Massive MIMO通信系统中信道估计技术研究[D]. 南京:南京邮电大学, 2016:44-54.(XIE J C. Research on channel estimation technology for massive MIMO communication system[D]. Nanjing:Nanjing University of Posts and Telecommunications, 2016:44-54.) [9] QI C, HUANG Y, JIN S, et al. Sparse channel estimation based on compressed sensing for massive MIMO systems[C]//Proceedings of the 2015 IEEE International Conference on Communications. Piscataway, NJ:IEEE, 2015:4558-4563. [10] RAO X, LAU V K N, KONG X. CSIT estimation and feedback for FDD multi-user massive MIMO systems[C]//Proceedings of the 2014 IEEE International Conference on Acoustics, Speech and Signal Processing. Piscataway, NJ:IEEE, 2014:3157-3161. [11] NAM J, ADHIKARY A, AHN J Y, et al. Joint spatial division and multiplexing:opportunistic beamforming, user grouping and simplified downlink scheduling[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5):876-890. [12] HU A, LV T, GAO H, et al. An ESPRIT-based approach for 2-D localization of incoherently distributed sources in massive MIMO systems[J]. IEEE Journal of Selected Topics in Signal Processing, 2014, 8(5):996-1011. [13] 刘紫燕, 唐虎, 刘世美.基于压缩感知的多小区MASSIVE MIMO信道估计[J]. 计算机应用, 2017, 37(9):2474-2478.(LIU Z Y, TANG H, LIU S M. Multi-cell channel estimation on compressive sensing in massive MIMO system[J]. Journal of Computer Applications, 2017, 37(9):2474-2478.) [14] YIN H, GESBERT D, FILIPPOU M, et al. A coordinated approach to channel estimation in large-scale multiple-antenna systems[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(2):264-273. [15] 徐立军.压缩感知重构算法及其应用研究[D]. 太原:中北大学, 2016:24-25.(XIU L J. Research on compressed sensing algorithms and applications[D]. Taiyuan:North University of China, 2016:24-25.) [16] ZHANG Y, QI R, ZENG Y. Backtracking-based matching pursuit method for distributed compressed sensing[J]. Multimedia Tools & Applications, 2017, 76(13):14691-14710. [17] WANG A, WANG Y, JIANG L. Improved sparse channel estimation for multi-user massive MIMO systems with compressive sensing[C]//Proceedings of the 2015 International Conference on Wireless Communications & Signal Processing. Piscataway, NJ:IEEE, 2015:1-5. |