Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (8): 2514-2520.DOI: 10.11772/j.issn.1001-9081.2023081170
• Network and communications • Previous Articles Next Articles
Fang LEI1,2, Yongcai NIU1,2()
Received:
2023-08-31
Revised:
2023-12-10
Accepted:
2023-12-18
Online:
2024-08-22
Published:
2024-08-10
Contact:
Yongcai NIU
About author:
LEI Fang, born in 1972, M. S., associate professor. Her research interests include 5G physical layer algorithm, LEO satellite communication.
Supported by:
通讯作者:
牛永才
作者简介:
雷芳(1972—),女,重庆人,副教授,硕士,主要研究方向:5G物理层算法、LEO卫星通信基金资助:
CLC Number:
Fang LEI, Yongcai NIU. Channel estimation method for low earth orbit satellite MIMO-OTFS system based on improved generalized orthogonal matching pursuit[J]. Journal of Computer Applications, 2024, 44(8): 2514-2520.
雷芳, 牛永才. 基于改进广义正交匹配追踪的低地球轨道卫星MIMO-OTFS系统的信道估计方法[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2514-2520.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023081170
仿真参数 | 数值 |
---|---|
信道模型 | NTN-TDL-D |
卫星的运行高度/km | 600 |
地球半径/km | 6 371 |
载波频率/GHz | 2 |
子载波间隔/kHz | 330 |
LoS路径数 | 1 |
NLoS路径数 | 3 |
卫星运行速度/ | 7 562.2 |
UT速度/ | 3 |
仰角/(°) | 50 |
方位角/(°) | [-90,90] |
OTFS数据大小 | (256,14) |
时延扩展/ns | 30 |
莱斯因子/dB | 11.707 |
阈值 | |
阈值系数 | 0.7 |
Tab. 1 Simulation parameters
仿真参数 | 数值 |
---|---|
信道模型 | NTN-TDL-D |
卫星的运行高度/km | 600 |
地球半径/km | 6 371 |
载波频率/GHz | 2 |
子载波间隔/kHz | 330 |
LoS路径数 | 1 |
NLoS路径数 | 3 |
卫星运行速度/ | 7 562.2 |
UT速度/ | 3 |
仰角/(°) | 50 |
方位角/(°) | [-90,90] |
OTFS数据大小 | (256,14) |
时延扩展/ns | 30 |
莱斯因子/dB | 11.707 |
阈值 | |
阈值系数 | 0.7 |
1 | YOU L, LI K-X, WANG J, et al. Massive MIMO transmission for LEO satellite communications [J]. IEEE Journal on Selected Areas in Communications, 2020, 38(8): 1851-1865. |
2 | NA Z, GUAN Q, FU C, et al. Channel model and throughput analysis for LEO OFDM satellite communication system [J]. International Journal of Future Generation Communication and Networking, 2013, 6(6): 109-122. |
3 | HADANI R, RAKIB S, TSATSANIS M, et al. Orthogonal time frequency space modulation [C]// Proceedings of the 2017 IEEE Wireless Communications and Networking Conference. Piscataway: IEEE, 2017: 1-6. |
4 | HADANI R, RAKIB S, MOLISCH A F, et al. Orthogonal Time Frequency Space (OTFS) modulation for millimeter-wave communications systems [C]// Proceedings of the 2017 IEEE MTT-S International Microwave Symposium. Piscataway: IEEE, 2017:681-683. |
5 | ZHOU X, GAO Z. Joint active user detection and channel estimation for grant-free NOMA-OTFS in LEO constellation Internet-of-Things [C]// Proceedings of the 2021 IEEE/CIC International Conference on Communications in China. Piscataway: IEEE, 2021: 735-740. |
6 | SHI J, HU J, YUE Y, et al. Outage probability for OTFS based downlink LEO satellite communication [J]. IEEE Transactions on Vehicular Technology, 2022, 71(3): 3355-3360. |
7 | LARSSON E G, EDFORS O, TUFVESSON F, et al. Massive MIMO for next generation wireless systems [J]. IEEE Communications Magazine, 2014, 52(2): 186-195. |
8 | BJÖRNSON E, HOYDIS J, KOUNTOURIS M, et al. Massive MIMO systems with non-ideal hardware: energy efficiency, estimation, and capacity limits [J]. IEEE Transactions on Information Theory, 2014, 60(11): 7112-7139. |
9 | NGO H Q, ASHIKHMIN A, YANG H, et al. Cell-free massive MIMO versus small cells [J]. IEEE Transactions on Wireless Communications, 2017, 16(3): 1834-1850. |
10 | LI T, HE R, AI B, et al. OTFS modulation performance in a satellite-to-ground channel at sub-6-GHz and millimeter-wave bands with high mobility [J]. Frontiers of Information Technology & Electronic Engineering, 2021, 22(4): 517-526. |
11 | ZHOU X, YING K, GAO Z, et al. Active terminal identification, channel estimation, and signal detection for grant-free NOMA-OTFS in LEO satellite Internet-of-Things [J]. IEEE Transactions on Wireless Communications, 2023, 22(4): 2847-2866. |
12 | BORA A S, PHAN K T, HONG Y. Spatially correlated MIMO-OTFS for LEO satellite communication systems [C]// Proceedings of the 2022 IEEE International Conference on Communications Workshops. Piscataway: IEEE, 2022: 723-728. |
13 | WANG X, SHEN W, XING C, et al. Joint Bayesian channel estimation and data detection for OTFS systems in LEO satellite communications [J]. IEEE Transactions on Communications, 2022, 70(7): 4386-4399. |
14 | SHEN B, WU Y, AN J, et al. Random access with massive MIMO-OTFS in LEO satellite communications [J]. IEEE Journal on Selected Areas in Communications, 2022, 40(10): 2865-2881. |
15 | TROPP J A, GIBERT A C. Signal recovery from random measurements via orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2007, 53(12): 4655-4666. |
16 | WU X, MA S, YANG X. Tensor-based low-complexity channel estimation for mmWave massive MIMO-OTFS systems [J]. Journal of Communications and Information Networks, 2020, 5(3): 324-334. |
17 | SHEN W, DAI L, AN J, et al. Channel estimation for Orthogonal Time Frequency Space (OTFS) massive MIMO [J]. IEEE Transactions on Signal Processing, 2019, 67(16): 4204-4217. |
18 | WANG J, KWON S, SHIM B. Generalized orthogonal matching pursuit [J]. IEEE Transactions on Signal Processing, 2012, 60(12): 6202-6216. |
19 | 张晓东,董唯光,汤旻安,等.压缩感知中基于广义Jaccard系数的gOMP重构算法[J].山东大学学报(理学版), 2017, 52(11): 23-28. |
ZHANG X D, DONG W G, TANG M A, et al. gOMP reconstruction algorithm based on generalized Jaccard coefficients in compressed sensing [J]. Journal of Shandong University (Natural Science), 2017, 52(11): 23-28. | |
20 | 袁伟娜,严秋.基于压缩感知的FBMC/OQAM系统信道估计方法[J].通信学报,2019,40(12): 98-104. |
YUAN W N, YAN Q. Channel estimation method based on compressed sensing for FBMC/OQAM system [J]. Journal on Communications, 2019, 40(12): 98-104. | |
21 | 贺新民,陈善恒,席纪江,等.一种稀疏度自适应OFDM系统信道估计算法 [J].信息通信,2020(8): 1-5. |
HE X M, CHEN S H, XI J J, et al. Sparse adaptive algorithm for OFDM system channel estimation [J]. Information & Communications, 2020(8): 1-5. | |
22 | SHI D, WANG W, YOU L, et al. Deterministic pilot design and channel estimation for downlink massive MIMO-OTFS systems in presence of the fractional Doppler [J]. IEEE Transactions on Wireless Communications, 2021, 20(11): 7151-7165. |
23 | KODHELI O, GUIDOTTI A, VANELLI-CORALLI A. Integration of satellites in 5G through LEO constellations [C]// Proceedings of the 2017 IEEE Global Communications Conference. Piscataway: IEEE, 2017: 1-6. |
24 | 3GPP. Study on New Radio (NR) to support non-terrestrial networks: TR 38.811 (V15.3.0) Release 15 [S]. [S.l.]: 3GPP, 2020. |
25 | 李金成.快速时变衰落信道的正交时频空传输关键技术研究 [D]. 成都:电子科技大学,2022: 21-25. |
LI J C. Research on key technologies of orthogonal time frequency space transmission in fast time varying fading channels [D]. Chengdu: University of Electronic Science and Technology of China, 2022: 21-25. | |
26 | 邢旺,唐晓刚,周一青,等.面向OTFS的时延-多普勒域信道估计方法综述 [J].通信学报,2022,43(12): 188-201. |
XING W, TANG X G, ZHOU Y Q, et al. Survey of channel estimation method in delay-Doppler domain for OTFS [J]. Journal on Communications, 2022, 43(12): 188-201. | |
27 | 杨海蓉,张成,丁大为,等.压缩传感理论与重构算法 [J].电子学报, 2011,39(1): 142-148. |
YANG H R, ZHANG C, DING D W, et al. The theory of compressed sensing and reconstruction algorithm [J]. Acta Electronica Sinica, 2011, 39(1): 142-148. | |
28 | 申滨,吴和彪,崔太平,等.基于最优索引广义正交匹配追踪的非正交多址系统多用户检测 [J].电子与信息学报,2020,42(3): 621-628. |
SHEN B, WU H B, CUI T P, et al. An optimal number of indices aided gOMP algorithm for multi-user detection in NOMA system [J]. Journal of Electronics & Information Technology, 2020, 42(3): 621-628. |
[1] | Fatang CHEN, Miao HUANG, Yufeng JIN. Resource allocation algorithm for low earth orbit satellites oriented to user demand [J]. Journal of Computer Applications, 2024, 44(4): 1242-1247. |
[2] | Xinhe ZHANG, Haoran TAN, Wenbo LYU. Low-complexity generalized space shift keying signal detection algorithm based on compressed sensing [J]. Journal of Computer Applications, 2023, 43(12): 3890-3895. |
[3] | Shuai LIU, Lin JIANG, Yuancheng LI, Rui SHAN, Yulin ZHU, Xin WANG. Parallel design and implementation of minimum mean square error detection algorithm based on array processor [J]. Journal of Computer Applications, 2022, 42(5): 1524-1530. |
[4] | Yi WANG, Liu YANG, Tongkuai ZHANG. Channel estimation based on compressive sensing in RIS-assisted millimeter wave system [J]. Journal of Computer Applications, 2022, 42(12): 3870-3875. |
[5] | CHEN Chengrui, SUN Ning, HE Shibiao, LIAO Yong. Deep learning-based joint channel estimation and equalization algorithm for C-V2X communications [J]. Journal of Computer Applications, 2021, 41(9): 2687-2693. |
[6] | JING Xinghong, SUN Guodong, HE Shibiao, LIAO Yong. Time-varying channel estimation method based on sliding window filtering and polynomial fitting [J]. Journal of Computer Applications, 2021, 41(9): 2699-2704. |
[7] | XU Zhiqiang, JIANG Tiegang, YANG Libo. Stochastic support selection based generalized orthogonal matching pursuit algorithm [J]. Journal of Computer Applications, 2020, 40(4): 1104-1108. |
[8] | ZHOU Zhen, YUAN Zhengdao. Efficient communication receiver design for Internet of things environment [J]. Journal of Computer Applications, 2020, 40(1): 202-206. |
[9] | DING Ning, GUAN Xinrong, YANG Weiwei, LI Tongkai, WANG Jianshe. Performance analysis of wireless key generation with multi-bit quantization under imperfect channel estimation condition [J]. Journal of Computer Applications, 2020, 40(1): 143-147. |
[10] | LI Huimin, ZHANG Zhizhong, LI Linxiao. Channel estimation algorithm based on cell reference signal in LTE-A system [J]. Journal of Computer Applications, 2018, 38(7): 2009-2014. |
[11] | JIN Feng, TANG Hong, ZHANG Jinyan, YIN Lixin. Pilot optimization and channel estimation in massive multiple-input multiple-output systems based on compressive sensing [J]. Journal of Computer Applications, 2018, 38(5): 1447-1452. |
[12] | TANG Hu, LIU Ziyan, LIU Shimei, FENG Li. Spatially common sparsity channel estimation based on compressive sensing for massive multi-input multi-output system [J]. Journal of Computer Applications, 2018, 38(4): 1106-1110. |
[13] | LIU Ziyan, TANG Hu, LIU Shimei. Multi-cell channel estimation based on compressive sensing in MASSIVE MIMO system [J]. Journal of Computer Applications, 2017, 37(9): 2474-2478. |
[14] | FAN Zifu, HU Min, LI Yuening. Dynamic pilot allocation based on graph coloring in massive MIMO systems [J]. Journal of Computer Applications, 2017, 37(12): 3356-3360. |
[15] | LIAO Han, MA Dongya, YIN Lixin. Capacity optimization of secondary user system in MIMO cognitive networks based on non-orthogonal multiple access [J]. Journal of Computer Applications, 2017, 37(12): 3361-3367. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||