[1] REYNDERS E. System identification methods for (operational) modal analysis:review and comparison[J]. Archives of Computational Methods in Engineering, 2012, 19(1):51-124. [2] 衷路生,李兵,龚锦红,等.高速列车非线性模型的极大似然辨识[J].自动化学报,2014,40(12):2950-2958.(ZHONG L S,LI B,GONG J H, et al. Maximum likelihood identification of nonlinear model for high-speed train[J]. Acta Automatica Sinica,2014, 40(12):2950-2958.) [3] ZHANG H, GONG S J, DONG Z Z. On-line parameter identification of induction motor based on RLS algorithm[C]//Proceedings of the 2013 International Conference on Electrical Machines and Systems. Piscataway, NJ:IEEE, 2013:2132-2137. [4] 刘慧婷,冯金金,张明.水下机器人操纵系统优化控制研究[J].计算机仿真, 2016,33(5):299-303.(LIU H T, FENG J J, ZHANG M. Research on optimal control of underwater robot control system[J]. Computer Simulation, 2016, 33(5):299-303.) [5] 石刚,赵伟,刘珊珊.基于无迹卡尔曼滤波估算电池SOC[J].计算机应用,2016,36(12):3492-3498.(SHI G, ZHAO W, LIU S S. Battery SOC estimation based on unscented Kalman filtering[J]. Journal of Computer Applications, 2016,36(12):3492-3498.) [6] 陈涵,刘会金,李大路,等.可变遗忘因子递推最小二乘法对时变参数测量[J].高电压技术,2008,34(7):1474-1477.(CHEN H, LIU H J, LI D L, et al. Time-varying parameters measurement by least square method with variable forgetting factors[J]. High Voltage Engineering, 2008, 34(7):1474-1477.) [7] SALEHI R, DEHGHAN M. A generalized moving least square reproducing kernel method[J]. Journal of Computational & Applied Mathematics, 2013, 249(6):120-132. [8] CHEN C, LI Y. An orthogonal least-square-based method for DEM generalization[J]. International Journal of Geographical Information Science, 2013, 27(1):154-167. [9] 何开锋,钱炜祺,张勇,等.偏最小二乘法在气动数据建模中的应用[J].宇航学报,2014,35(3):277-282.(HE K F, QIAN W Q, ZHANG Y, et al. Application of partial least squares regression method in modeling of aerodynamic data[J]. Journal of Astronautics, 2014, 35(3):277-282.) [10] YANG Z, LI X, BOWERS C P, et al. An efficient evolutionary approach to parameter identification in a building thermal model[J]. IEEE Transactions on Systems, Man and Cybernetics Part C:Applications and Reviews, 2012,42(6):957-969. [11] 张来福,田赟,姜敏,等.基于遗传算法的伺服系统摩擦参数辨识与仿真[J].计算机应用,2016,36(S1):110-112.(ZHANG L F, TIAN Y, JIANG M, et al. Friction parameter identification and simulation of servo system based on genetic algorithm[J]. Journal of Computer Applications, 2016,36(S1):110-112.) [12] 孙黎霞,倪瑶,马骙军.混沌遗传算法在励磁系统参数辨识中的应用[J].电气技术,2012(9):9-14.(SUN L X, NI Y, MA K J. Study on parameter identification of excitation system based on chaos genetic algorithm[J]. Electrical Engineering, 2012, (9):9-14.) [13] ALFI A, MODARES H. System identification and control using adaptive particle swarm optimization[J]. Applied Mathematical Modelling, 2011, 35(3):1210-1221. [14] YANG S, WU M, YAO X, et al. Load modeling and identification based on ant colony algorithms for EV charging stations[J]. IEEE Transactions on Power Systems, 2014, 30(4):1997-2003. [15] 魏彤,田双彪.基于RLS-DE算法的多变量径向磁轴承系统辨识[J].机械工程学报,2016,52(3):143-150.(WEI T, TIAN S B. The identification of multivariable radial magnetic bearing system based on RLS-DE algorithm[J]. Journal of Mechanical Engineering, 2016,52(3):143-150.) [16] 王兵,李盼池,许少华.一种基于过程神经元网络辨识的PID控制模型及方法[J].计算机应用,2010,30(1):233-235.(WANG B, LI P C, XU S H. PID control model and method based on process neural network identification[J]. Journal of Computer Applications, 2010, 30(1):233-235.) [17] ZHAO H, GAO S, HE Z, et al. Identification of nonlinear dynamic system using a novel recurrent wavelet neural network based on the pipelined architecture[J]. IEEE Transactions on Industrial Electronics, 2014, 61(8):4171-4182. [18] AL-DHAIFLLAH M, WESTWICK D T. Identification of auto-regressive exogenous hammerstein models based on support vector machine regression[J]. IEEE Transactions on Control Systems Technology, 2013, 21(6):2083-2090. [19] BANAZADEH A, GHORBANI M T. Frequency domain identification of the Nomoto model to facilitate Kalman filter estimation and PID heading control of a patrol vessel[J]. Ocean Engineering, 2013, 72(4):344-355. |