[1] REN J B, LONG J, QIN Y, et al. Fault criticality evaluation of metro door based on WLSM and FWGM[C]//EITRT 2013:Proceedings of the 2013 International Conference on Electrical and Information Technologies for Rail Transportation, LNEE 288. Berlin:Springer, 2014, Ⅱ:293-300. [2] 朱兴统,熊建斌.基于PCA和BP神经网络的故障诊断仿真系统[J].自动化与仪器仪表,2015(12):47-48. (ZHU X T, XIONG J B. The fault diagnosis system based on PCA and BP neural network[J]. Automation & Instrumentation, 2015(12):47-48.) [3] 李海林,郭崇慧,杨丽彬. 基于时间序列数据挖掘的故障检测方法[J].数据采集与处理,2016,31(4):782-790. (LI H L, GUO C H, YANG L B. Fault detection algorithm based on time series data mining[J]. Journal of Data Acquisition and Processing, 2016, 31(4):782-790.) [4] 胡为,高雷,傅莉.基于最优阶次HMM的电机故障诊断方法研究[J].仪器仪表学报,2013,34(3):524-530. (HU W, GAO L, FU L. Research on motor fault detection method based on optimal order hidden Markov model[J]. Chinese Journal of Scientific Instrument, 2013, 34(3):524-530.) [5] GRUBB H J, WALDEN A T. Characterizing seismic time series using the discrete wavelet transform[J]. Geophysical Prospecting, 2010, 45(2):183-205. [6] 林意,王智博.基于一阶滤波的时间序列分段线性表示方法[J].计算机工程,2016,42(9):151-157.(LIN Y, WANG Z B. Time series piecewise linear representation method based on first-order filtering[J]. Computer Engineering, 2016, 42(9):151-157.) [7] LIN J, KHADE R, LI Y. Rotation-invariant similarity in time series using bag-of-patterns representation[J]. Journal of Intelligent Information Systems, 2012, 39(2):287-315. [8] LIN J, KEOGH E, WEI L, et al. Experiencing SAX:a novel symbolic representation of time series[J]. Data Mining and Knowledge Discovery, 2007, 15(2):107-144. [9] LKHAGVAK B, SUZUKI Y, KAWAGOE K. Extended SAX:extension of symbolic aggregate approximation for financial time series data representation[EB/OL].[2017-03-16]. http://www.ieice.org/iss/de/DEWS/DEWS2006/doc/4A-i8.pdf. [10] 田再克,李洪儒,孙健,等.基于改进MF-DFA和SSM-FCM的液压泵退化状态识别方法[J].仪器仪表学报,2016,37(8):1851-1860. (TIAN Z K, LI H R, SUN J, et al. Degradation state identification method of hydraulic pump based on improved MF-DFA and SSM-FCM[J]. Chinese Journal of Scientific Instrument, 2016, 37(8):1851-1860.) [11] LAI C-P, CHUNG P-C, TSENG V S. A novel two-level clustering method for time series data analysis[J]. Expert Systems with Applications, 2010, 37(9):6319-6326. [12] 陈立江,毛峡,MITSURU I,等.基于Fisher准则与SVM的分层语音情感识别[J].模式识别与人工智能,2012,25(4):604-609. (CHEN L J, MAO X, MITSURU I, et al. Multi-level speech emotion recognition based on Fisher criterion and SVM[J]. Pattern Recognition and Artificial Intelligence, 2012, 25(4):604-609.) [13] SⅡRTOLA P, KOSKIMAKI H, HUIKARI V, et al. Improving the classification accuracy of streaming data using SAX similarity features[J]. Pattern Recognition Letters, 2011, 32(13):1659-1668. [14] 律方成,金虎,王子建,等.基于主成分分析和多分类相关向量机的GIS局部放电模式识别[J].电工技术学报,2015,30(6):225-231. (LYU F C, JIN H, WANG Z J, et al. GIS partial discharge pattern recognition based on principal component analysis and milticlass relevance vector machine[J]. Transactions of China Electrotechnical Society, 2015, 30(6):225-231.) [15] 陈法法,汤宝平,苏祖强,等.基于等距映射与加权KNN的旋转机械故障诊断[J].仪器仪表学报,2013,34(1):215-220. (CHEN F F, TANG B P, SU Z Q, et al. Rotation machinery fault diagnosis based on isometric mapping and weighted KNN[J]. Chinese Journal of Scientific Instrument, 2013, 34(1):215-220.) |