[1] 罗天洪,马力.基于过路径点的三次多项式插值函数的仿蜘蛛机器人足路径规划[J].机械传动,2017(7):1-6.(LUO T H, MA L. Path planning for spider biomimetic robot leg based on cubic polynomial interpolation function with midpoints[J]. Journal of Mechanical Transmission, 2017(7):1-6.) [2] 吴俊君,管贻生,张宏,等.仿人机器人视觉导航中的实时性运动模糊探测器设计[J].自动化学报,2014,40(2):267-276.(WU J J, GUAN Y S, ZHANG H, et al. A real-time method for motion blur detection in visual navigation with a humanoid robot[J]. Acta Automatica Sinica, 2014, 40(2):267-276.) [3] 赵荣齐.基于人工势场法的机器人路径规划研究[D].济南:山东大学,2008:14-45.(ZHAO R Q. Study on path planning of robot based on artificial potential field[D]. Jinan:Shandong University, 2008:14-45.) [4] 刘传领.基于势场法和遗传算法的机器人路径规划技术研究[D].南京:南京理工大学,2012:18-34.(LIU C L. Researches on technologies for robot path planning based on artificial potential field and genetic algorithm[D]. Nanjing:Nanjing University of Science and Technology, 2012:18-34.) [5] 石为人,黄兴华,周伟.基于改进人工势场法的移动机器人路径规划[J].计算机应用,2010,30(8):2021-2023.(SHI W R, HUANG X H, ZHOU W. Path planning of mobile robot based on improved artificial potential field[J]. Journal of Computer Applications,2010, 30(8):2021-2023.) [6] KALA R. On repelling robotic trajectories:coordination in navigation of multiple mobile robots[J]. Intelligent Service Robotics, 2018, 11(1):79-95. [7] 宋勇,李贻斌,栗春,等.基于神经网络的移动机器人路径规划方法[J].系统工程与电子技术,2008,30(2):316-319.(SONG Y, LI Y B, LI C, et al. Path planning methods of mobile robot based on neural network[J]. Systems Engineering and Electronics, 2008, 30(2):316-319.) [8] 吕战永,曹江涛.自反馈生物激励神经网络机器人路径规划[J].计算机工程与应用,2014,50(16):255-258,270.(LYU Z Y, CAO J T. Robot path planning method based on biologically incentives neural network with self-feedback[J]. Computer Engineering and Applications, 2014, 50(16):255-258, 270.) [9] 钱夔,宋爱国,章华涛,等.基于自适应模糊神经网络的机器人路径规划方法[J].东南大学学报(自然科学版),2012,42(4):637-642.(QIAN K, SONG A G, ZHANG H T, et al. Path planning for mobile robot based on adaptive fuzzy neural network[J]. Journal of Southeast University (Natural Science Edition), 2012, 42(4):637-642.) [10] 吴冰,钱立军,虞明,等.基于RBF神经网络的自动泊车路径规划[J].合肥工业大学学报(自然科学版),2012,35(4):459-462.(WU B, QIAN L J, YU M, et al. Path planning of automatic parllel parking based on RBF neural network[J]. Journal of Hefei University of Technology (Natural Science), 2012, 35(4):459-462.) [11] QU H, YANG S X, WILLMS A R, et al. Real-time robot path planning based on a modified pulse-coupled neural network model[J]. IEEE Transactions on Neural Networks, 2009, 20(11):1724-1739. [12] 樊晓平,李双艳,陈特放.基于新人工势场函数的机器人动态避障规划[J].控制理论与应用,2005,22(5):703-707.(FAN X P, LI S Y, CHEN T F. Dynamic obstacle-avoiding path plan for robots based on a new artificial potential field function[J]. Control Theory & Applications, 2005, 22(5):703-707.) [13] 刘建华,杨建国,刘华平,等.基于势场蚁群算法的移动机器人全局路径规划方法[J].农业机械学报,2015,46(9):18-27.(LIU J H, YANG J G, LIU H P, et al. Robot global path planning based on ant colony optimization with artificial potential field [J]. Transactions of the Chinese Society of Agricultural Machinery, 2015, 46(9): 18-27.) [14] DELMERICO J, MUEGGLER E, NITSCH J, et al. Active autonomous aerial exploration for ground robot path planning [J]. IEEE Robotics and Automation Letters, 2017, 2(2): 664-671. [15] SUN P, YU Z. Tracking control for a cushion robot based on fuzzy path planning with safe angular velocity [J]. IEEE/CAA Journal of Automatica Sinica, 2017, 4(4): 610-619. [16] 张万绪,张向兰,李莹,等.基于改进粒子群算法的智能机器人路径规划[J].计算机应用,2014,34(2):510-513.(ZHANG W X, ZHANG X L, LI Y, et al. Path planning for intelligent robots based on improved particle swarm optimization algorithm [J]. Journal of Computer Applications, 2014, 34(2): 510-513.) [17] 刘科,周继强,郭小和.基于改进粒子群算法的无人机路径规划研究[J].中北大学学报(自然科学版),2013,34(4):441-447.(LIU K, ZHOU J Q, GUO X H. Path planning research for unmanned air vehicle based on improved particle swarm algorithm [J]. Journal of North University of China (Natural Science Edition), 2013, 34(4): 441-447.) [18] 赵先章,常红星,曾隽芳,等.一种基于粒子群算法的移动机器人路径规划方法[J].计算机应用研究,2007,24(3):181-183.(ZHAO X Z, CHANG H X, ZENG J F, et al. Path planning method for mobile robot based on particle swarm algorithm [J]. Application Research of Computers, 2007, 24(3): 181-183.) [19] 邓高峰,张雪萍,刘彦萍.一种障碍环境下机器人路径规划的蚁群粒子群算法[J].控制理论与应用,2009,26(8):879-883.(DENG G F, ZHANG X P, LIU Y P. Ant colony optimization and particle swarm optimization for robot-path planning in obstacle environment [J]. Control Theory & Applications, 2009, 26(8): 879-883.) [20] WAN A, XU J, CHEN H P, et al. Optimal path planning and control of assembly robots for hard-to-measure easy-to-deform components [J]. IEEE/ASME Transactions on Mechatronics, 2017, 22(4): 1600-1609. |