[1] PEDRYCZ W. Granular Computing:Analysis and Design of Intelligent Systems[M].[S. l.]:CRC Press, 2016:1-6. [2] ZADEH L A. Fuzzy logic-a personal perspective[J]. Fuzzy Sets and Systems, 2015, 281:4-20. [3] MAMDANI E H. Application of fuzzy logic to approximate reasoning using linguistic synthesis[C]//Proceedings of the 6th International Symposium on Multiple-Valued Logic. Washington, DC:IEEE Computer Society, 1976:196-202. [4] ADNAN M R H M, SARKHEYLI A, ZAIN A M, et al. Fuzzy logic for modeling machining process:a review[J]. Artificial Intelligence Review, 2015, 43(3):345-379. [5] ŠTĚPNICKA M, BURDA M, ŠTĚPNICKOVÁ L. Fuzzy rule base ensemble generated from data by linguistic associations mining[J]. Fuzzy Sets and Systems, 2016, 285:140-161. [6] MANDAL S, JAYARAM B. SISO fuzzy relational inference systems based on fuzzy implications are universal approximators[J]. Fuzzy Sets and Systems, 2015, 277:1-21. [7] FAZZOLARI M, ALCALA R, NOJIMA Y, et al. A review of the application of multiobjective evolutionary fuzzy systems:current status and further directions[J]. IEEE Transactions on Fuzzy Systems, 2013, 21(1):45-65. [8] WANG D, ZENG X, KEANE J A. A simplified structure evolving method for Mamdani fuzzy system identification and its application to high-dimensional problems[J]. Information Sciences, 2013, 220:110-123. [9] STĚPNICKA M, DE BAETS B. Implication-based models of monotone fuzzy rule bases[J]. Fuzzy Sets and Systems, 2013, 232:134-155. [10] PEDRYCZ W, SKOWRON A, KREINOVICH V. Handbook of Granular Computing[M]. New York:John Wiley & Sons, 2008:97-140. [11] HU X, PEDRYCZ W, WANG X. Granular fuzzy rule-based models:a study in a comprehensive evaluation and construction of fuzzy models[J]. IEEE Transactions on Fuzzy Systems, 2017, 25(5):1342-1355. [12] 王国胤, 李帅, 杨洁. 知识与数据双向驱动的多粒度认知计算[J]. 西北大学学报(自然科学版), 2018, 48(4):488-500.(WANG G Y, LI S, YANG J. A multi-granularity cognitive computing model bidirectionally driven by knowledge and data[J]. Journal of Northwest University (Natural Science Edition), 2018, 48(4):488-500.) [13] 徐怡, 肖鹏. 容差关系多粒度粗糙集中近似集动态更新方法[J]. 计算机应用, 2019,39(5):1247-1251.(XU Y, XIAO P. Dynamic updating method of approximations in multigranulation rough sets based on tolerance relation[J]. Journal of Computer Applications, 2019, 39(5):1247-1251.) [14] 苗夺谦, 徐菲菲, 姚一豫, 等. 粒计算的集合论描述[J]. 计算机学报, 2012, 35(2):351-363.(MIAO D Q, XU F F, YAO Y Y, et al. Set-theoretic formulation of granular computing[J]. Chinese Journal of Computers, 2012, 35(2):351-363.) [15] HU X, PEDRYCZ W, WANG D. Fuzzy rule-based models with randomized development mechanisms[J]. Fuzzy Sets and Systems, 2019, 361:71-87. [16] PEDRYCZ W. The principle of justifiable granularity and an optimization of information granularity allocation as fundamentals of granular computing[J]. Journal of Information Processing Systems, 2011, 7(3):397-412. [17] BEZDEK J C, EHRLICH R, FULL W. FCM:the fuzzy c-means clustering algorithm[J]. Computers & Geosciences, 1984, 10(2/3):191-203. [18] HU X, PEDRYCZ W, WU G, et al. Data reconstruction with information granules:an augmented method of fuzzy clustering[J]. Applied Soft Computing, 2017, 55:523-532. [19] SHEN Y, PEDRYCZ W, WANG X. Clustering homogeneous granular data:formation and evaluation[J]. IEEE Transactions on Cybernetics, 2018, 49(4):1-12. [20] LEE C C. Fuzzy logic in control systems:fuzzy logic controller II[J]. IEEE Transactions on Systems, Man, and Cybernetics, 1990, 20(2):419-435. [21] ROSS T J. Fuzzy Logic with Engineering Applications[M]. New York:John Wiley & Sons, 2005:63-94. [22] PEDRYCZ W, WANG X. Designing fuzzy sets with the use of the parametric principle of justifiable granularity[J]. IEEE Transactions on Fuzzy Systems, 2016, 24(2):489-496. [23] KENNEDY J. Particle swarm optimization[C]//Encyclopedia of Machine Learning. New York:Springer, 2010:760-766. [24] HU X, PEDRYCZ W, WANG X. From fuzzy rule-based models to their granular generalizations[J]. Knowledge-Based Systems, 2017, 124:133-143. [25] TRELEA I C. The particle swarm optimization algorithm:convergence analysis and parameter selection[J]. Information Processing Letters, 2003, 85(6):317-325. [26] PARK H S, PEDRYCZ W, OH S K. Granular neural networks and their development through context-based clustering and adjustable dimensionality of receptive fields[J]. IEEE Transactions on Neural Networks, 2009, 20(10):1604-1616. |