[1] 智研咨询集团.2017-2022年中国大数据行业深度调研及未来前景预测报告,R510340[R].北京:智研咨询集团,2017:4.(Zhi Yan Consulting Group. Deep survey and future forecast report of China's big data industry for 2017-2022, R510340[R]. Beijing:Zhi Yan Consulting Group, 2017:4.) [2] 孟小峰,慈祥.大数据管理:概念、技术与挑战[J].计算机研究与发展,2013,50(1):146-169.(MENG X F, CI X. Big data management:concepts, techniques and challenges[J]. Journal of Computer Research and Development, 2013, 50(1):146-169.) [3] 陈付梅,韩德志,毕坤,等.大数据环境下的分布式数据流处理关键技术探析[J].计算机应用,2017,37(3):620-627.(CHEN F M, HAN D Z, BI K, et al. Key technologies of distributed data stream processing based on big data[J]. Journal of Computer Applications, 2017, 37(3):620-627.) [4] 孙大为,张广艳,郑纬民.大数据流式计算:关键技术及系统实例[J].软件学报,2014,25(4):839-862.(SUN D W, ZHANG G Y, ZHENG W M. Big data stream computing:technologies and instances[J]. Journal of Software, 2014, 25(4):839-862.) [5] ALEXANDROV A, BERGMANN R, EWEN S, et al. The Stratosphere platform for big data analytics[J]. The VLDB Journal, 2014, 23(6):939-964. [6] CARBONE P, EWEN S, HARIDI S. Apache Flink:stream and batch processing in a single engine[EB/OL].[2017-11-20]. http://sites.computer.org/debull/A15dec/p28.pdf. [7] KOSTAS T, ELLEN F. Introduction to Apache Flink[M]. Boston:O'Reilly, 2016:54. [8] TANMAY D. Learning Apache Flink[M]. Birmingham:PACKT Publishing, 2017:63. [9] Apache Software Foundation. Apache Flink[EB/OL].[2017-10-13]. http://flink.apache.org/. [10] Apache Software Foundation. Apache Storm[EB/OL].[2017-10-13]. http://storm.apache.org/. [11] CARBONE P, FÓRA G, EWEN S, et al. Lightweight asyn-chronous snapshots for distributed dataflows[J/OL]. arxiv Preprint, 2017[2017-11-01]. https://arxiv.org/pdf/1506.08603.pdf. [12] UFUK C. How Apache Flink handles backpressure[EB/OL].[2017-10-13]. http://data-artisans.com/blog/how-flink-handles-backpressure/. [13] CARBONE P, TRAUB J, KATSIFODIMOS A, et al. Cutty:aggregate sharing for user-defined windows[C]//Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. New York:ACM, 2016:1201-1210. [14] BJÖRN L, DANIEL W, ODEJ K. Massively-parallel stream processing under QoS constraints with Nephele[C]//Proceedings of the 21st International Symposium on High-Performance Parallel and Distributed Computing. New York:ACM, 2012:271-282. [15] BJÖRN L, DANIEL W, ODEJ K. Nephele streaming:stream processing under QoS constraints at scale[J]. Cluster Computing, 2014, 17(1):61-78. [16] LOHRMANN B, JANACIK P, KAO O. Elastic stream processing with latency guarantees[C]//ICDCS 2015:Proceedings of the 2015 IEEE 35th International Conference on Distributed Computing Systems. Piscataway, NJ:IEEE, 2015:399-410. [17] WU Y, TAN K L. ChronoStream:elastic stateful stream computation in the cloud[C]//ICDE 2015:Proceedings of the 2015 IEEE 31st International Conference on Data Engineering. Piscataway, NJ:IEEE, 2015:723-734. [18] GULISANO V, JIMENEZ-PERIS R, PATINO-MARTINEZ M, et al. Streamcloud:an elastic and scalable data streaming system[J]. IEEE Transactions on Parallel and Distributed Systems, 2012, 23(12):2351-2365. [19] SUN D, ZHANG G, YANG S, et al. Re-Stream:real-time and energy-efficient resource scheduling in big data stream computing environments[J]. Information Sciences, 2015, 319:92-112. [20] 李梓杨,于炯,卞琛,等.基于负载感知的数据流动态负载均衡策略[J].计算机应用,2017,37(10):2760-2766.(LI Z Y, YU J, BIAN C, et al. Dynamic data stream load balancing strategy based on load awareness[J]. Journal of Computer Applications, 2017, 37(10):2760-2766.) [21] 阿里云.权威详解|阿里新一代实时计算引擎Blink[EB/OL].[2018-01-24]. http://yq.aliyun.com/articles/90243.(Alibaba cloud. Blink, The new generation of real-time computing engine in Alibaba cloud[EB/OL].[2018-01-24]. http://yq.aliyun.com/articles/90243.) |