Journal of Computer Applications ›› 2023, Vol. 43 ›› Issue (3): 776-784.DOI: 10.11772/j.issn.1001-9081.2022020231
Special Issue: 数据科学与技术
• Data science and technology • Previous Articles Next Articles
Zhiqiang CHEN, Meng HAN(), Hongxin WU, Muhang LI, Xilong ZHANG
Received:
2022-03-02
Revised:
2022-05-25
Accepted:
2022-05-25
Online:
2022-08-16
Published:
2023-03-10
Contact:
Meng HAN
About author:
CHEN Zhiqiang, born in 1998, M. S. candidate. His research interests include data mining, data stream classification.Supported by:
通讯作者:
韩萌
作者简介:
陈志强(1998—),男,江苏扬州人,硕士研究生,CCF会员,主要研究方向:数据挖掘、数据流分类基金资助:
CLC Number:
Zhiqiang CHEN, Meng HAN, Hongxin WU, Muhang LI, Xilong ZHANG. Multi-stage weighted concept drift detection method[J]. Journal of Computer Applications, 2023, 43(3): 776-784.
陈志强, 韩萌, 武红鑫, 李慕航, 张喜龙. 分段加权的概念漂移检测方法[J]. 《计算机应用》唯一官方网站, 2023, 43(3): 776-784.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2022020231
分类 | 数据集 | 实例数 | 特征维数 | 类标签数 | 漂移数 | 概念 长度/103 | 漂移 类型 |
---|---|---|---|---|---|---|---|
人工 数据集 | SINE | 105 | 2 | 2 | 4 | 20 | 突变型 |
MIXED | 105 | 4 | 2 | 4 | 20 | 突变型 | |
LED | 105 | 24 | 10 | 3 | 25 | 渐变型 | |
CIRCLES | 105 | 2 | 2 | 3 | 25 | 渐变型 | |
真实 数据集 | ELECTRICITY | 45 312 | 8 | 2 | — | — | — |
POKER HAND | 106 | 2 | 10 | — | — | — | |
FOREST COVERTYPE | 581 012 | 54 | 7 | — | — | — |
Tab. 1 Information of experimental datasets
分类 | 数据集 | 实例数 | 特征维数 | 类标签数 | 漂移数 | 概念 长度/103 | 漂移 类型 |
---|---|---|---|---|---|---|---|
人工 数据集 | SINE | 105 | 2 | 2 | 4 | 20 | 突变型 |
MIXED | 105 | 4 | 2 | 4 | 20 | 突变型 | |
LED | 105 | 24 | 10 | 3 | 25 | 渐变型 | |
CIRCLES | 105 | 2 | 2 | 3 | 25 | 渐变型 | |
真实 数据集 | ELECTRICITY | 45 312 | 8 | 2 | — | — | — |
POKER HAND | 106 | 2 | 10 | — | — | — | |
FOREST COVERTYPE | 581 012 | 54 | 7 | — | — | — |
分类器 | 方法 | LED | CIRCLES | SINE | MIXED | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DD | TPR | FPR | FNR | DD | TPR | FPR | FNR | DD | TPR | FPR | FNR | DD | TPR | FPR | FNR | ||
NB | MSDDM | 215.20 | 1.00 | 0 | 0 | 120.20 | 1.00 | 0.23 | 0 | 33.80 | 1.00 | 0.10 | 0 | 33.35 | 1.00 | 0.20 | 0 |
MSDDMnon | 215.22 | 1.00 | 0.12 | 0 | 120.21 | 1.00 | 0.33 | 0 | 33.80 | 1.00 | 0.21 | 0 | 33.34 | 1.00 | 0.33 | 0 | |
BDDM | 230.22 | 1.00 | 0 | 0 | 138.60 | 1.00 | 0.23 | 0 | 38.25 | 1.00 | 0.10 | 0 | 37.35 | 1.00 | 0.20 | 0 | |
FHDDMS | 260.93 | 1.00 | 0 | 0 | 180.60 | 1.00 | 0 | 0 | 40.80 | 1.00 | 0 | 0 | 40.65 | 1.00 | 0.15 | 0 | |
FHDDM | 260.93 | 1.00 | 0 | 0 | 180.60 | 1.00 | 0 | 0 | 49.85 | 1.00 | 0 | 0 | 48.70 | 1.00 | 0.12 | 0 | |
MDDM_A | 257.20 | 1.00 | 0 | 0 | 186.67 | 1.00 | 0 | 0 | 41.65 | 1.00 | 0 | 0 | 39.45 | 1.00 | 0.12 | 0 | |
MDDM_E | 224.27 | 1.00 | 0 | 0 | 127.07 | 1.00 | 0.10 | 0 | 41.70 | 1.00 | 0 | 0 | 39.65 | 1.00 | 0.17 | 0 | |
MDDM_G | 224.27 | 1.00 | 0 | 0 | 127.07 | 1.00 | 0.10 | 0 | 40.70 | 1.00 | 0.04 | 0 | 39.65 | 1.00 | 0.17 | 0 | |
HDDM_W | 287.40 | 1.00 | 0 | 0 | 157.00 | 1.00 | 0.26 | 0 | 34.75 | 1.00 | 0 | 0 | 34.40 | 1.00 | 0.30 | 0 | |
HDDM_A | 310.20 | 1.00 | 0 | 0 | 237.73 | 1.00 | 0.13 | 0 | 94.15 | 1.00 | 0.04 | 0 | 72.80 | 1.00 | 0 | 0 | |
EDDM | 741.67 | 0.33 | 0.67 | 0.67 | 956.00 | 0.07 | 0.99 | 0.93 | 209.00 | 0.05 | 0.99 | 0.95 | 42.50 | 0.15 | 0.98 | 0.85 | |
RDDM | 332.93 | 1.00 | 0 | 0 | 403.53 | 1.00 | 0.36 | 0 | 88.63 | 1.00 | 0.31 | 0 | 99.05 | 1.00 | 0.37 | 0 | |
DDM | 432.73 | 1.00 | 0 | 0 | 640.70 | 0.67 | 0.37 | 0.33 | 160.02 | 0.70 | 0.07 | 0 | 157.55 | 0.80 | 0.28 | 0.20 | |
HT | MSDDM | 210.27 | 1.00 | 0 | 0 | 54.60 | 1.00 | 0.10 | 0 | 34.05 | 1.00 | 0.01 | 0 | 32.25 | 1.00 | 0.25 | 0 |
MSDDMnon | 210.27 | 1.00 | 0.15 | 0 | 54.61 | 1.00 | 0.21 | 0 | 34.00 | 1.00 | 0.10 | 0 | 32.25 | 1.00 | 0.35 | 0 | |
BDDM | 238.56 | 1.00 | 0 | 0 | 65.23 | 1.00 | 0.10 | 0 | 38.90 | 1.00 | 0.10 | 0 | 37.95 | 1.00 | 0.25 | 0 | |
FHDDMS | 256.00 | 1.00 | 0 | 0 | 69.80 | 1.00 | 0 | 0 | 41.55 | 1.00 | 0.04 | 0 | 42.45 | 1.00 | 0.23 | 0 | |
FHDDM | 261.00 | 1.00 | 0 | 0 | 77.27 | 1.00 | 0 | 0 | 49.20 | 1.00 | 0.04 | 0 | 52.40 | 1.00 | 0 | 0 | |
MDDM_A | 260.93 | 1.00 | 0 | 0 | 77.27 | 1.00 | 0 | 0 | 51.80 | 1.00 | 0.04 | 0 | 49.10 | 1.00 | 0.12 | 0 | |
MDDM_E | 224.27 | 1.00 | 0 | 0 | 68.53 | 1.00 | 0.05 | 0 | 39.35 | 1.00 | 0.07 | 0 | 39.40 | 1.00 | 0.29 | 0 | |
MDDM_G | 224.27 | 1.00 | 0 | 0 | 61.40 | 1.00 | 0.13 | 0 | 39.35 | 1.00 | 0.07 | 0 | 40.30 | 1.00 | 0.28 | 0 | |
HDDM_W | 287.40 | 1.00 | 0 | 0 | 76.27 | 1.00 | 0.13 | 0 | 33.35 | 1.00 | 0.04 | 0 | 35.70 | 1.00 | 0.35 | 0 | |
HDDM_A | 277.73 | 1.00 | 0 | 0 | 73.67 | 1.00 | 0.18 | 0 | 57.65 | 1.00 | 0.12 | 0 | 66.60 | 1.00 | 0.25 | 0 | |
EDDM | 876.75 | 0.27 | 0.87 | 0.73 | 316.00 | 0.13 | 0.99 | 0.87 | 247.50 | 0.05 | 0.99 | 0.95 | 338.25 | 0.20 | 0.99 | 0.80 | |
RDDM | 338.13 | 1.00 | 0 | 0 | 272.13 | 1.00 | 0.05 | 0 | 97.65 | 1.00 | 0.31 | 0 | 94.35 | 1.00 | 0.50 | 0 | |
DDM | 444.00 | 1.00 | 0 | 0 | 429.33 | 1.00 | 0.05 | 0 | 155.00 | 0.90 | 0.31 | 0.10 | 170.60 | 0.85 | 0.18 | 0.15 |
Tab. 2 Drift detection performance results on different artificial datasets
分类器 | 方法 | LED | CIRCLES | SINE | MIXED | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DD | TPR | FPR | FNR | DD | TPR | FPR | FNR | DD | TPR | FPR | FNR | DD | TPR | FPR | FNR | ||
NB | MSDDM | 215.20 | 1.00 | 0 | 0 | 120.20 | 1.00 | 0.23 | 0 | 33.80 | 1.00 | 0.10 | 0 | 33.35 | 1.00 | 0.20 | 0 |
MSDDMnon | 215.22 | 1.00 | 0.12 | 0 | 120.21 | 1.00 | 0.33 | 0 | 33.80 | 1.00 | 0.21 | 0 | 33.34 | 1.00 | 0.33 | 0 | |
BDDM | 230.22 | 1.00 | 0 | 0 | 138.60 | 1.00 | 0.23 | 0 | 38.25 | 1.00 | 0.10 | 0 | 37.35 | 1.00 | 0.20 | 0 | |
FHDDMS | 260.93 | 1.00 | 0 | 0 | 180.60 | 1.00 | 0 | 0 | 40.80 | 1.00 | 0 | 0 | 40.65 | 1.00 | 0.15 | 0 | |
FHDDM | 260.93 | 1.00 | 0 | 0 | 180.60 | 1.00 | 0 | 0 | 49.85 | 1.00 | 0 | 0 | 48.70 | 1.00 | 0.12 | 0 | |
MDDM_A | 257.20 | 1.00 | 0 | 0 | 186.67 | 1.00 | 0 | 0 | 41.65 | 1.00 | 0 | 0 | 39.45 | 1.00 | 0.12 | 0 | |
MDDM_E | 224.27 | 1.00 | 0 | 0 | 127.07 | 1.00 | 0.10 | 0 | 41.70 | 1.00 | 0 | 0 | 39.65 | 1.00 | 0.17 | 0 | |
MDDM_G | 224.27 | 1.00 | 0 | 0 | 127.07 | 1.00 | 0.10 | 0 | 40.70 | 1.00 | 0.04 | 0 | 39.65 | 1.00 | 0.17 | 0 | |
HDDM_W | 287.40 | 1.00 | 0 | 0 | 157.00 | 1.00 | 0.26 | 0 | 34.75 | 1.00 | 0 | 0 | 34.40 | 1.00 | 0.30 | 0 | |
HDDM_A | 310.20 | 1.00 | 0 | 0 | 237.73 | 1.00 | 0.13 | 0 | 94.15 | 1.00 | 0.04 | 0 | 72.80 | 1.00 | 0 | 0 | |
EDDM | 741.67 | 0.33 | 0.67 | 0.67 | 956.00 | 0.07 | 0.99 | 0.93 | 209.00 | 0.05 | 0.99 | 0.95 | 42.50 | 0.15 | 0.98 | 0.85 | |
RDDM | 332.93 | 1.00 | 0 | 0 | 403.53 | 1.00 | 0.36 | 0 | 88.63 | 1.00 | 0.31 | 0 | 99.05 | 1.00 | 0.37 | 0 | |
DDM | 432.73 | 1.00 | 0 | 0 | 640.70 | 0.67 | 0.37 | 0.33 | 160.02 | 0.70 | 0.07 | 0 | 157.55 | 0.80 | 0.28 | 0.20 | |
HT | MSDDM | 210.27 | 1.00 | 0 | 0 | 54.60 | 1.00 | 0.10 | 0 | 34.05 | 1.00 | 0.01 | 0 | 32.25 | 1.00 | 0.25 | 0 |
MSDDMnon | 210.27 | 1.00 | 0.15 | 0 | 54.61 | 1.00 | 0.21 | 0 | 34.00 | 1.00 | 0.10 | 0 | 32.25 | 1.00 | 0.35 | 0 | |
BDDM | 238.56 | 1.00 | 0 | 0 | 65.23 | 1.00 | 0.10 | 0 | 38.90 | 1.00 | 0.10 | 0 | 37.95 | 1.00 | 0.25 | 0 | |
FHDDMS | 256.00 | 1.00 | 0 | 0 | 69.80 | 1.00 | 0 | 0 | 41.55 | 1.00 | 0.04 | 0 | 42.45 | 1.00 | 0.23 | 0 | |
FHDDM | 261.00 | 1.00 | 0 | 0 | 77.27 | 1.00 | 0 | 0 | 49.20 | 1.00 | 0.04 | 0 | 52.40 | 1.00 | 0 | 0 | |
MDDM_A | 260.93 | 1.00 | 0 | 0 | 77.27 | 1.00 | 0 | 0 | 51.80 | 1.00 | 0.04 | 0 | 49.10 | 1.00 | 0.12 | 0 | |
MDDM_E | 224.27 | 1.00 | 0 | 0 | 68.53 | 1.00 | 0.05 | 0 | 39.35 | 1.00 | 0.07 | 0 | 39.40 | 1.00 | 0.29 | 0 | |
MDDM_G | 224.27 | 1.00 | 0 | 0 | 61.40 | 1.00 | 0.13 | 0 | 39.35 | 1.00 | 0.07 | 0 | 40.30 | 1.00 | 0.28 | 0 | |
HDDM_W | 287.40 | 1.00 | 0 | 0 | 76.27 | 1.00 | 0.13 | 0 | 33.35 | 1.00 | 0.04 | 0 | 35.70 | 1.00 | 0.35 | 0 | |
HDDM_A | 277.73 | 1.00 | 0 | 0 | 73.67 | 1.00 | 0.18 | 0 | 57.65 | 1.00 | 0.12 | 0 | 66.60 | 1.00 | 0.25 | 0 | |
EDDM | 876.75 | 0.27 | 0.87 | 0.73 | 316.00 | 0.13 | 0.99 | 0.87 | 247.50 | 0.05 | 0.99 | 0.95 | 338.25 | 0.20 | 0.99 | 0.80 | |
RDDM | 338.13 | 1.00 | 0 | 0 | 272.13 | 1.00 | 0.05 | 0 | 97.65 | 1.00 | 0.31 | 0 | 94.35 | 1.00 | 0.50 | 0 | |
DDM | 444.00 | 1.00 | 0 | 0 | 429.33 | 1.00 | 0.05 | 0 | 155.00 | 0.90 | 0.31 | 0.10 | 170.60 | 0.85 | 0.18 | 0.15 |
方法 | NB分类器 | HT分类器 | ||||
---|---|---|---|---|---|---|
PH | ELE | FC | PH | ELE | FC | |
MSDDM | 77.275 84 | 84.527 28 | 86.849 55 | 77.383 89 | 85.688 12 | 87.658 62 |
DDM | 61.968 93 | 81.177 17 | 88.026 06 | 72.739 18 | 85.414 46 | 87.354 99 |
EDDM | 77.479 04 | 84.829 63 | 86.081 87 | 77.304 78 | 84.911 28 | 86.000 81 |
FHDDM | 75.270 29 | 81.592 07 | 83.462 99 | 75.520 17 | 83.966 72 | 83.893 96 |
FHDDMS | 76.167 42 | 82.686 71 | 84.492 06 | 76.295 13 | 84.582 45 | 84.696 72 |
HDDM_A | 76.481 09 | 84.920 11 | 87.418 16 | 76.401 62 | 85.712 39 | 87.242 62 |
HDDM_W | 77.109 89 | 84.092 51 | 86.224 55 | 77.114 84 | 85.061 35 | 85.973 44 |
MDDM_A | 75.270 29 | 81.592 07 | 83.462 99 | 75.520 17 | 83.966 72 | 83.893 96 |
MDDM_E | 76.013 05 | 82.587 39 | 84.211 17 | 76.138 96 | 84.776 66 | 84.365 56 |
MDDM_G | 76.016 31 | 82.591 81 | 84.218 57 | 76.137 51 | 84.679 56 | 84.352 82 |
BDDM | 77.020 19 | 84.388 24 | 87.354 82 | 74.415 85 | 85.098 87 | 87.099 23 |
RDDM | 76.669 23 | 84.191 83 | 86.861 55 | 76.696 96 | 85.180 53 | 86.415 77 |
Tab. 3 Classification accuracy results by using different classifiers
方法 | NB分类器 | HT分类器 | ||||
---|---|---|---|---|---|---|
PH | ELE | FC | PH | ELE | FC | |
MSDDM | 77.275 84 | 84.527 28 | 86.849 55 | 77.383 89 | 85.688 12 | 87.658 62 |
DDM | 61.968 93 | 81.177 17 | 88.026 06 | 72.739 18 | 85.414 46 | 87.354 99 |
EDDM | 77.479 04 | 84.829 63 | 86.081 87 | 77.304 78 | 84.911 28 | 86.000 81 |
FHDDM | 75.270 29 | 81.592 07 | 83.462 99 | 75.520 17 | 83.966 72 | 83.893 96 |
FHDDMS | 76.167 42 | 82.686 71 | 84.492 06 | 76.295 13 | 84.582 45 | 84.696 72 |
HDDM_A | 76.481 09 | 84.920 11 | 87.418 16 | 76.401 62 | 85.712 39 | 87.242 62 |
HDDM_W | 77.109 89 | 84.092 51 | 86.224 55 | 77.114 84 | 85.061 35 | 85.973 44 |
MDDM_A | 75.270 29 | 81.592 07 | 83.462 99 | 75.520 17 | 83.966 72 | 83.893 96 |
MDDM_E | 76.013 05 | 82.587 39 | 84.211 17 | 76.138 96 | 84.776 66 | 84.365 56 |
MDDM_G | 76.016 31 | 82.591 81 | 84.218 57 | 76.137 51 | 84.679 56 | 84.352 82 |
BDDM | 77.020 19 | 84.388 24 | 87.354 82 | 74.415 85 | 85.098 87 | 87.099 23 |
RDDM | 76.669 23 | 84.191 83 | 86.861 55 | 76.696 96 | 85.180 53 | 86.415 77 |
方法 | NB分类器 | HT分类器 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CPU seconds | RAM-Hours | CPU seconds | RAM-Hours | |||||||||
PH | ELE | FC | PH | ELE | FC | PH | ELE | FC | PH | ELE | FC | |
MSDDM | 4.00 | 0.47 | 12.31 | 2.02 | 1.71 | 1.42 | 7.39 | 0.98 | 21.64 | 7.32 | 8.30 | 3.74 |
BDDM | 4.69 | 0.48 | 12.14 | 2.19 | 1.53 | 1.34 | 6.80 | 1.22 | 25.34 | 6.40 | 9.72 | 4.27 |
DDM | 7.97 | 0.48 | 12.10 | 5.75 | 1.84 | 1.74 | 9.42 | 1.34 | 25.23 | 8.90 | 1.22 | 4.30 |
EDDM | 3.92 | 0.52 | 12.11 | 2.23 | 1.50 | 1.70 | 9.81 | 1.09 | 22.53 | 1.02 | 8.44 | 3.74 |
RDDM | 4.16 | 0.45 | 11.53 | 2.80 | 2.62 | 1.90 | 9.66 | 1.27 | 26.47 | 1.11 | 1.40 | 6.26 |
FHDDM | 4.01 | 0.50 | 11.83 | 1.93 | 1.64 | 1.32 | 6.28 | 0.80 | 20.03 | 5.99 | 6.43 | 3.40 |
FHDDMS | 4.25 | 0.50 | 11.73 | 2.07 | 1.68 | 1.32 | 6.55 | 0.86 | 22.08 | 6.29 | 7.00 | 3.76 |
MDDM_A | 4.39 | 0.55 | 13.27 | 2.14 | 1.85 | 1.50 | 6.52 | 0.95 | 19.03 | 6.27 | 7.79 | 3.24 |
MDDM_E | 4.59 | 0.50 | 12.56 | 2.24 | 1.69 | 1.42 | 7.09 | 0.78 | 22.78 | 6.82 | 6.37 | 3.88 |
MDDM_G | 4.23 | 0.48 | 12.61 | 2.07 | 1.64 | 1.42 | 6.55 | 0.91 | 20.45 | 6.30 | 7.41 | 3.48 |
HDDM_A | 4.30 | 0.52 | 11.42 | 2.04 | 1.67 | 1.54 | 8.55 | 1.14 | 33.14 | 8.36 | 9.19 | 6.88 |
HDDM_W | 4.25 | 0.48 | 14.47 | 2.08 | 1.64 | 1.63 | 9.27 | 1.02 | 27.72 | 8.25 | 8.31 | 4.73 |
Tab. 4 Spatiotemporal performance result using different classifier
方法 | NB分类器 | HT分类器 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
CPU seconds | RAM-Hours | CPU seconds | RAM-Hours | |||||||||
PH | ELE | FC | PH | ELE | FC | PH | ELE | FC | PH | ELE | FC | |
MSDDM | 4.00 | 0.47 | 12.31 | 2.02 | 1.71 | 1.42 | 7.39 | 0.98 | 21.64 | 7.32 | 8.30 | 3.74 |
BDDM | 4.69 | 0.48 | 12.14 | 2.19 | 1.53 | 1.34 | 6.80 | 1.22 | 25.34 | 6.40 | 9.72 | 4.27 |
DDM | 7.97 | 0.48 | 12.10 | 5.75 | 1.84 | 1.74 | 9.42 | 1.34 | 25.23 | 8.90 | 1.22 | 4.30 |
EDDM | 3.92 | 0.52 | 12.11 | 2.23 | 1.50 | 1.70 | 9.81 | 1.09 | 22.53 | 1.02 | 8.44 | 3.74 |
RDDM | 4.16 | 0.45 | 11.53 | 2.80 | 2.62 | 1.90 | 9.66 | 1.27 | 26.47 | 1.11 | 1.40 | 6.26 |
FHDDM | 4.01 | 0.50 | 11.83 | 1.93 | 1.64 | 1.32 | 6.28 | 0.80 | 20.03 | 5.99 | 6.43 | 3.40 |
FHDDMS | 4.25 | 0.50 | 11.73 | 2.07 | 1.68 | 1.32 | 6.55 | 0.86 | 22.08 | 6.29 | 7.00 | 3.76 |
MDDM_A | 4.39 | 0.55 | 13.27 | 2.14 | 1.85 | 1.50 | 6.52 | 0.95 | 19.03 | 6.27 | 7.79 | 3.24 |
MDDM_E | 4.59 | 0.50 | 12.56 | 2.24 | 1.69 | 1.42 | 7.09 | 0.78 | 22.78 | 6.82 | 6.37 | 3.88 |
MDDM_G | 4.23 | 0.48 | 12.61 | 2.07 | 1.64 | 1.42 | 6.55 | 0.91 | 20.45 | 6.30 | 7.41 | 3.48 |
HDDM_A | 4.30 | 0.52 | 11.42 | 2.04 | 1.67 | 1.54 | 8.55 | 1.14 | 33.14 | 8.36 | 9.19 | 6.88 |
HDDM_W | 4.25 | 0.48 | 14.47 | 2.08 | 1.64 | 1.63 | 9.27 | 1.02 | 27.72 | 8.25 | 8.31 | 4.73 |
1 | HU H Q, KANTARDZIC M M, SETHI T S. No Free lunch theorem for concept drift detection in streaming data classification: a review[J]. WIREs Data Mining and Knowledge Discovery, 2020, 10(2): No.e1327. 10.1002/widm.1327 |
2 | GOEL K, BATRA S. Adaptive online learning for classification under concept drift[J]. International Journal of Computational Science and Engineering, 2021, 24(2): 128-135. 10.1504/ijcse.2021.10037867 |
3 | MASSI M C, IEVA F, LETTIERI E. Data mining application to healthcare fraud detection: a two-step unsupervised clustering method for outlier detection with administrative databases[J]. BMC Medical Informatics and Decision Making, 2020, 20: No.160. 10.1186/s12911-020-01143-9 |
4 | DEMERTZIS K, ILIADIS L, ANEZAKIS V D. A dynamic ensemble learning framework for data stream analysis and real-time threat detection[C]// Proceedings of the 2018 International Conference on Artificial Neural Networks. Cham: Springer, 2018: 669-681. 10.1007/978-3-030-01418-6_66 |
5 | DASH R, SAMAL S, DASH R, et al. An integrated TOPSIS crow search based classifier ensemble: in application to stock index price movement prediction[J]. Applied Soft Computing, 2019, 85: No.105784. 10.1016/j.asoc.2019.105784 |
6 | 张炳,文峥,魏筱瑜,等. InterDroid:面向概念漂移的可解释性Android恶意软件检测方法[J]. 计算机研究与发展, 2021, 58(11):2456-2474. 10.7544/issn1000-1239.2021.20210560 |
ZHANG B, WEN Z, WEI X Y, et al. InterDroid: an interpretable Android malware detection method for conceptual drift[J]. Journal of Computer Research and Development, 2021, 58(11):2456-2474. 10.7544/issn1000-1239.2021.20210560 | |
7 | GAMA J, MEDAS P, CASTILLO G, et al. Learning with drift detection[C]// Proceedings of the 2004 Brazilian Symposium on Artificial Intelligence. Berlin: Springer, 2004: 286-295. 10.1007/978-3-540-28645-5_29 |
8 | BAENA-GARCÍA M, DEL CAMPO-ÁVILA J, FIDALGO R, et al. Early drift detection method[EB/OL]. [2022-01-20].. |
9 | BARROS R S M, CABRAL D R L, GONÇALVES P M, Jr., et al. RDDM: reactive drift detection method[J]. Expert Systems with Applications, 2017, 90: 344-355. 10.1016/j.eswa.2017.08.023 |
10 | BARROS R S M D, HIDALGO J I G, CABRAL D R D L. Wilcoxon rank sum test drift detector[J]. Neurocomputing, 2018, 275: 1954-1963. 10.1016/j.neucom.2017.10.051 |
11 | MAHDI O A, PARDEDE E, ALI N, et al. Diversity measure as a new drift detection method in data streaming[J]. Knowledge-Based Systems, 2020, 191: No.105227. 10.1016/j.knosys.2019.105227 |
12 | BAIDARI I, HONNIKOLL N. Bhattacharyya distance based concept drift detection method for evolving data stream[J]. Expert Systems with Applications, 2021, 183: No.115303. 10.1016/j.eswa.2021.115303 |
13 | BIFET A, GAVALDÁ R. Learning from time-changing data with adaptive windowing[C]// Proceedings of the 7th SIAM International Conference on Data Mining. Philadelphia, PA: SIAM, 2007: 443-448. 10.1137/1.9781611972771.42 |
14 | HUANG D T J, KOH Y S, DOBBIE G, et al. Detecting volatility shift in data streams[C]// Proceedings of 2014 IEEE International Conference on Data Mining. Piscataway: IEEE, 2014: 863-868. 10.1109/icdm.2014.50 |
15 | PESARANGHADER A, VIKTOR H L. Fast Hoeffding drift detection method for evolving data streams[C]// Proceedings of 2016 Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Cham: Springer, 2016: 96-111. 10.1007/978-3-319-46227-1_7 |
16 | FRÍAS-BLANCO I, DEL CAMPO-ÁVILA J, RAMOS-JIMÉNEZ G, et al. Online and non-parametric drift detection methods based on Hoeffding’s bounds[J]. IEEE Transactions on Knowledge and Data Engineering, 2015, 27(3): 810-823. 10.1109/tkde.2014.2345382 |
17 | PESARANGHADER A, VIKTOR H L, PAQUET E. McDiarmid drift detection methods for evolving data streams[C]// Proceedings of 2018 International Joint Conference on Neural Networks. Piscataway: IEEE, 2018: 1-9. 10.1109/ijcnn.2018.8489260 |
18 | GAMA J, SEBASTIÃO R, RODRIGUES P P. On evaluating stream learning algorithms[J]. Machine Learning, 2013, 90(3): 317-346. 10.1007/s10994-012-5320-9 |
19 | LU J, LIU A J, DONG F, et al. Learning under concept drift: a review[J]. IEEE Transactions on Knowledge and Data Engineering, 2019, 31(12): 2346-2363. |
20 | OLIVEIRA G H F M, MINKU L L, OLIVEIRA A L I. GMM-VRD: a gaussian mixture model for dealing with virtual and real concept drifts[C]// Proceedings of 2019 International Joint Conference on Neural Networks. Piscataway: IEEE, 2019: 1-8. 10.1109/ijcnn.2019.8852097 |
21 | GUO H S, LI H, REN Q Y, et al. Concept drift type identification based on multi-sliding windows[J]. Information Sciences, 2022, 585: 1-23. 10.1016/j.ins.2021.11.023 |
22 | 郭虎升,任巧燕,王文剑. 基于时序窗口的概念漂移类别检测[J]. 计算机研究与发展, 2022, 59(1):127-143. 10.7544/issn1000-1239.20200562 |
GUO H S, REN Q Y, WANG W J. Concept drift class detection based on time window[J]. Journal of Computer Research and Development, 2022, 59(1):127-143. 10.7544/issn1000-1239.20200562 | |
23 | KHAMASSI I, SAYED-MOUCHAWEH M, HAMMAMI M, et al. Discussion and review on evolving data streams and concept drift adapting[J]. Evolving Systems, 2018, 9(1): 1-23. 10.1007/s12530-016-9168-2 |
24 | NISHIDA K, YAMAUCHI K. Detecting concept drift using statistical testing[C]// Proceedings of the 2007 International Conference on Discovery Science. Berlin: Springer, 2007:264-269. 10.1109/icmlc.2007.4370772 |
25 | PESARANGHADER A, VIKTOR H L, PAQUET E. Reservoir of diverse adaptive learners and stacking fast Hoeffding drift detection methods for evolving data streams[J]. Machine Learning, 2018, 107(11): 1711-1743. 10.1007/s10994-018-5719-z |
26 | PEARS R, SAKTHITHASAN S, KOH Y S. Detecting concept change in dynamic data streams[J]. Machine Learning, 2014, 97(3): 259-293. 10.1007/s10994-013-5433-9 |
27 | HOEFFDING W. Probability inequalities for sums of bounded random variables[J]. Journal of the American Statistical Association, 1963, 58(301): 13-30. 10.1080/01621459.1963.10500830 |
28 | BIFET A, HOLMES G, KIRKBY R, et al. MOA: massive online analysis[J]. Journal of Machine Learning Research, 2010, 11: 1601-1604. |
29 | BIFET A, HOLMES G, PFAHRINGER B, et al. Fast perceptron decision tree learning from evolving data streams[C]// Proceedings of the 2010 Pacific-Asia Conference on Knowledge Discovery and Data Mining, LNCS 6119. Berlin: Springer, 2010: 299-310. |
[1] | Hua HUANG, Ziyi YANG, Xiaolong LI, Chuang LI. Predictive business process monitoring method based on concept drift [J]. Journal of Computer Applications, 2024, 44(10): 3167-3176. |
[2] | Dongliang MU, Meng HAN, Ang LI, Shujuan LIU, Zhihui GAO. Overview of classification methods for complex data streams with concept drift [J]. Journal of Computer Applications, 2023, 43(6): 1664-1675. |
[3] | Le WANG, Meng HAN, Xiaojuan LI, Ni ZHANG, Haodong CHENG. Ensemble classification algorithm based on dynamic weighting function [J]. Journal of Computer Applications, 2022, 42(4): 1137-1147. |
[4] | Xiaojuan LI, Meng HAN, Le WANG, Ni ZHENG, Haodong CHENG. Dynamic weighted ensemble classification algorithm based on accuracy climbing [J]. Journal of Computer Applications, 2022, 42(1): 123-131. |
[5] | Zhihui SHAN, Meng HAN, Qiang HAN. Survey of high utility pattern mining on dynamic data [J]. Journal of Computer Applications, 2022, 42(1): 94-108. |
[6] | JING Xinghong, SUN Guodong, HE Shibiao, LIAO Yong. Time-varying channel estimation method based on sliding window filtering and polynomial fitting [J]. Journal of Computer Applications, 2021, 41(9): 2699-2704. |
[7] | YIN Chunyong, ZHANG Guojie. Ensemble classification model for distributed drifted data streams [J]. Journal of Computer Applications, 2021, 41(7): 1947-1955. |
[8] | GUO Shuai, SU Yang. Encrypted traffic classification method based on data stream [J]. Journal of Computer Applications, 2021, 41(5): 1386-1391. |
[9] | FAN Zhongxin. Clustering tendency analysis algorithm based on data stream [J]. Journal of Computer Applications, 2020, 40(8): 2248-2254. |
[10] | QIU Yuan, Chang Xiangmao, QIU Qian, PENG Cheng, SU Shanting. Stream data anomaly detection method based on long short-term memory network and sliding window [J]. Journal of Computer Applications, 2020, 40(5): 1335-1339. |
[11] | BAI Dongying, YI Yaxing, WANG Qingchao, YU Zhiyong. Gradual multi-kernel learning method for concept drift [J]. Journal of Computer Applications, 2019, 39(9): 2494-2498. |
[12] | SUN Xiaojuan, SHI Tao, HU Yuxin, TONG Jizhou, LI Bing, SONG Yao. Real-time processing of space science satellite data based on stream computing [J]. Journal of Computer Applications, 2019, 39(6): 1563-1568. |
[13] | ZHANG Yitian, YU Jiong, LU Liang, LI Ziyang. Task scheduling strategy based on data stream classification in Heron [J]. Journal of Computer Applications, 2019, 39(4): 1106-1116. |
[14] | HAN Meng, DING Jian. Survey of frequent pattern mining over data streams [J]. Journal of Computer Applications, 2019, 39(3): 719-727. |
[15] | YANG Shiqiang, LUO Xiaoyu, QIAO Dan, LIU Peilei, LI Dexin. Continuous action segmentation and recognition based on sliding window and dynamic programming [J]. Journal of Computer Applications, 2019, 39(2): 348-353. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||