Journal of Computer Applications ›› 2019, Vol. 39 ›› Issue (2): 494-500.DOI: 10.11772/j.issn.1001-9081.2018061243

Previous Articles     Next Articles

Online task and resource scheduling designing for container cloud queue based on Lyapunov optimization method

LI Lei1, XUE Yang1, LYU Nianling1, FENG Min2   

  1. 1. School of Electronic and Information Engineering, South China University of Technology, Guangzhou Guangdong 510641, China;
    2. 21 CN Limited Liability Company, Guangzhou Guangdong 510630, China
  • Received:2018-06-14 Revised:2018-09-07 Online:2019-02-10 Published:2019-02-15
  • Supported by:
    This work is partially supported by the National Natural Science Foundation of China (61472144), the Guangdong Science and Technology Project (2017A010101027, 2015B010131004).

基于李雅普诺夫优化的容器云队列在线任务和资源调度设计

李磊1, 薛洋1, 吕念玲1, 冯敏2   

  1. 1. 华南理工大学 电子与信息学院, 广州 510641;
    2. 世纪龙信息网络有限责任公司, 广州 510630
  • 通讯作者: 李磊
  • 作者简介:李磊(1983-),男,云南昆明人,高级实验师,博士,CCF会员,主要研究方向:云计算、分布式系统的优化;薛洋(1977-),女,辽宁沈阳人,副教授,博士,CCF会员,主要研究方向:机器学习、最优化计算;吕念玲(1970-),女,广东湛江人,高级实验师,硕士,主要研究方向:电路系统、实验教学系统优化;冯敏(1979-),男,广东广州人,工程师,主要研究方向:移动互联网应用、多媒体服务。
  • 基金资助:
    国家自然科学基金资助项目(61472144);广东省科技计划项目(2017A010101027,2015B010131004)。

Abstract: To improve the resource utilization with Quality of Service (QoS) guarantee, a task and resource scheduling method under Lyapunov optimization for container cloud queue was proposed. Firstly, based on the queueing model of cloud computing, the Lyapunov function was used to analyze the variety of the task queue length. Secondly, the minimum energy consumption objective function was constructed under the task QoS guarantee. Finally, Lyapunov optimization method was used to solve the minimum cost objective function to obtain an optimization scheduling policy for the online tasks and container resources, improving the resource utilization and guaranteeing the QoS. The CloudSim simulation results show that, the proposed task and resource scheduling policy achieves high resource utilization under the QoS guarantee, which realizes the online task and resource optimization scheduling of container cloud and provides necessary reference for cloud computing task and resource overall optimization based on queuing model.

Key words: cloud computing, resource scheduling, modeling and analysis, Quality of Service (QoS) guarantee, energy consumption optimization, Lyapunov optimization

摘要: 为在保证任务服务质量(QoS)的条件下提高容器云资源利用率,提出一种基于李雅普诺夫的容器云队列任务和资源调度优化策略。首先,在云计算服务排队模型的基础上,通过李雅普诺夫函数分析任务队列长度的变化;然后,在任务QoS的约束下,构建资源功耗的最小化目标函数;最后,利用李雅普诺夫优化方法求解最小资源功耗目标函数,获得在线的任务和容器资源的优化调度策略,实现对任务和资源调度进行整体优化,从而保证任务的QoS并提高资源利用率。CloudSim仿真结果表明,所提的任务和资源调度策略在保证任务QoS的条件下能获得高的资源利用率,实现容器云在线任务和资源优化调度,并且为基于排队模型的云计算任务和资源整体优化提供必要的参考。

关键词: 云计算, 资源调度, 建模与分析, 服务质量保证, 功耗优化, 李雅普诺夫优化

CLC Number: