[1] MELL P M, GRANCE T. The NIST definition of cloud computing, SP 800-145[R]. Gaithersburg, MD:National Institute of Standards & Technology, 2011:2-4. [2] SERRANO D, BOUCHENAK S, KOUKI Y, et al. SLA guarantees for cloud services[J]. Future Generation Computer Systems, 2016, 54:233-246. [3] RODRIGUES E, ASSUNCAO R, PAPPA G L, et al. Exploring multiple evidence to infer users' location in Twitter[J]. Neurocomputing, 2016, 171:30-38. [4] CHEN T, GAO X, CHEN G. The features, hardware, and architectures of data center networks:a survey[J]. Journal of Parallel and Distributed Computing, 2016, 96:45-74. [5] CHIANG Y-J, OUYANG Y-C, HSU C-H. An optimal cost-efficient resource provisioning for multi-servers cloud computing[C]//Proceedings of the 2013 International Conference on Cloud Computing and Big Data. Washington, DC:IEEE Computer Society, 2013:225-231. [6] SLADESCU M, FEKETE A, LEE K, et al. Event aware workload prediction:a study using auction events[C]//WISE 2012:Proceedings of the 2012 International Conference on Web Information Systems Engineering. Berlin:Springer-Verlag, 2012:368-381. [7] ISLAM S, KEUNG J, LEE K, et al. Empirical prediction models for adaptive resource provisioning in the cloud[J]. Future Generation Computer Systems, 2012, 28(1):155-162. [8] CALHEIROS R N, MASOUMI E, RANJAN R, et al. Workload prediction using ARIMA model and its impact on cloud applications' QoS[J]. IEEE Transactions on Cloud Computing, 2015, 3(4):449-458. [9] PACHECO-SANCHEZ S, CASALE G, SCOTNEY B, et al. Markovian workload characterization for QoS prediction in the cloud[C]//CLOUD'11:Proceedings of the 2011 IEEE International Conference on Cloud Computing. Washington, DC:IEEE Computer Society, 2011:147-154. [10] 徐达宇,丁帅.改进GWO优化SVM的云计算资源负载短期预测研究[J]. 计算机工程与应用, 2017, 53(7):68-73. (XU D Y, DING S. Research on improved GWO-optimized SVM-based short-term load prediction for cloud computing[J]. Computer Engineering and Applications, 2017, 53(7):68-73.) [11] 赵宏伟,申德荣,田力威.云计算环境下资源需求预测与调度方法的研究[J]. 小型微型计算机系统,2016,37(4):659-663. (ZHAO H W, SHEN D R, TIAN L W. Research on resources forecasting and scheduling method in cloud computing environment[J]. Journal of Chinese Computer Systems, 2016, 37(4):659-663.) [12] 李丹程,王晓晨,宋晓雪,等.基于OpenStack的资源负载预测方法研究[J]. 计算机应用研究,2014,31(7):2178-2182. (LI D C, WANG X C, SONG X X, et al. Study on load prediction method based on OpenStack[J]. Application Research of Computers, 2014, 31(7):2178-2182.) [13] ZHU Q, AGRAWAL G. Resource provisioning with budget constraints for adaptive applications in cloud environments[J]. IEEE Transactions on Services Computing, 2012, 5(4):497-511. [14] BONVIN N, PAPAIOANNOU T G, ABERER K. Autonomic SLA-driven provisioning for cloud applications[C]//CCGRID'11:Proceedings of the 2011 IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing. Washington, DC:IEEE Computer Society, 2011:434-443. [15] KHAZAEI H, MISIC J, MISIC V B. A fine-grained performance model of cloud computing centers[J]. IEEE Transactions on Parallel & Distributed Systems, 2013, 24(11):2138-2147. [16] 李腾耀,张凤琴,王梦非.使用遗传算法改进的两阶段云任务调度算法研究[J].小型微型计算机系统,2017,38(6):1305-1310. (LI T Y, ZHANG F Q, WANG M F. Improved two period cloud task scheduling algorithm with genetic algorithm[J]. Journal of Chinese Computer Systems, 2017, 38(6):1305-1310.) [17] 朱海,王洪峰,廖貅武.云环境下能耗优化的任务调度模型及虚拟机部署算法[J]. 系统工程理论与实践,2016,36(3):768-778. (ZHU H, WANG H F, LIAO X W. Task scheduling model and virtual machine deployment algorithm for energy consumption optimization in cloud computing[J]. Systems Engineering-Theory & Practice, 2016, 36(3):768-778.) [18] ANDERSON C. Docker[Software engineering] [J]. IEEE Software, 2015, 32(3):102-c3. [19] ENTICKNAP N. Von Neumann architecture[J]. Computer Jargon Explained, 1989(Suppl 2):128-129. [20] KUMAR S, BUYYA R. Green cloud computing and environmental sustainability[M]//Harnessing Green IT:Principles and Practices. Hoboken:John Wiley & Sons, 2012:315-339. [21] CHIANG Y-J, OUYANG Y-C, HSU C-H. An efficient green control algorithm in cloud computing for cost optimization[J]. IEEE Transactions on Cloud Computing, 2015, 3(2):145-155. [22] CALHEIROS R N, RANJAN R, BUYYA R. Virtual machine provisioning based on analytical performance and QoS in cloud computing environments[C]//ICPP'11:Proceedings of the 2011 International Conference on Parallel Processing. Washington, DC:IEEE Computer Society, 2011:295-304. [23] LI S, ZHOU Y, JIAO L, et al. Towards operational cost minimization in hybrid clouds for dynamic resource provisioning with delay-aware optimization[J]. IEEE Transactions on Services Computing, 2015, 8(3):398-409. [24] LU P, SUN Q, WU K, et al. Distributed online hybrid cloud management for profit-driven multimedia cloud computing[J]. IEEE Transactions on Multimedia, 2015, 17(8):1297-1308. [25] KHAZAEI H, MISIC J, MISIC V B. Performance analysis of cloud computing centers using M/G/m/m+r queuing systems[J]. IEEE Transactions on Parallel and Distributed Systems, 2012, 23(5):936-943. [26] NEELY M. Stochastic Network Optimization with Application to Communication and Queueing Systems[M]. Williston, VT:Morgan and Claypool Publishers, 2010:15-16. [27] LIU J, STOLYAR A L, CHIANG M, et al. Queue back-pressure random access in multihop wireless networks:optimality and stability[J]. IEEE Transactions on Information Theory, 2009, 55(9):4087-4098. [28] RASMUSSEN R V, TRICK M A. Round robin scheduling-a survey[J]. European Journal of Operational Research, 2008, 188(3):617-636. [29] ATIEWI S, YUSSOF S, RUSLI M E. A comparative analysis of task scheduling algorithms of virtual machines in cloud environment[J]. Journal of Computer Science, 2015, 11(6):804-812. [30] CALHEIROS R N, RANJAN R, BELOGLAZOV A, et al. CloudSim:a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning algorithms[J]. Software Practice & Experience, 2011, 41(1):23-50. |