Journal of Computer Applications ›› 2022, Vol. 42 ›› Issue (1): 198-208.DOI: 10.11772/j.issn.1001-9081.2021071291
• Advanced computing • Previous Articles Next Articles
Mingyao SHEN, Meng HAN(), Shiyu DU, Rui SUN, Chunyan ZHANG
Received:
2021-07-19
Revised:
2021-09-03
Accepted:
2021-09-15
Online:
2021-09-03
Published:
2022-01-10
Contact:
Meng HAN
About author:
SHEN Mingyao, born in 1994, M. S. candidate. His research interests include data mining, artificial intelligence.Supported by:
通讯作者:
韩萌
作者简介:
申明尧(1994—),男,山东菏泽人,硕士研究生,CCF会员,主要研究方向:数据挖掘、人工智能基金资助:
CLC Number:
Mingyao SHEN, Meng HAN, Shiyu DU, Rui SUN, Chunyan ZHANG. Data center server energy consumption optimization algorithm combining XGBoost and Multi-GRU[J]. Journal of Computer Applications, 2022, 42(1): 198-208.
申明尧, 韩萌, 杜诗语, 孙蕊, 张春砚. 融合XGBoost和Multi-GRU的数据中心服务器能耗优化算法[J]. 《计算机应用》唯一官方网站, 2022, 42(1): 198-208.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2021071291
组件 | 所占百分比/% |
---|---|
服务器 | 40 |
交换机和路由器 | 10 |
空调 | 12 |
制冷系统 | 25 |
供电电源 | 10 |
照明 | 3 |
Tab. 1 Composition of data center energy consumption
组件 | 所占百分比/% |
---|---|
服务器 | 40 |
交换机和路由器 | 10 |
空调 | 12 |
制冷系统 | 25 |
供电电源 | 10 |
照明 | 3 |
超参数 | 取值 |
---|---|
n_estimators | 20.00 |
learning_rate | 0.30 |
max_depth | 3.00 |
min_child_weight | 2.00 |
reg_alpha | 0.05 |
reg_lambda | 0.60 |
Tab. 2 XGBoost parameters
超参数 | 取值 |
---|---|
n_estimators | 20.00 |
learning_rate | 0.30 |
max_depth | 3.00 |
min_child_weight | 2.00 |
reg_alpha | 0.05 |
reg_lambda | 0.60 |
硬件环境 | 配置 |
---|---|
处理器 | Intel XeonE5 2609V3 |
内存 | 8 GB DDR4 ECC |
硬盘 | 4 TB SATA |
网卡 | I210-i |
Tab. 3 Server node configuration parameters
硬件环境 | 配置 |
---|---|
处理器 | Intel XeonE5 2609V3 |
内存 | 8 GB DDR4 ECC |
硬盘 | 4 TB SATA |
网卡 | I210-i |
模型 | RMSE | MAE |
---|---|---|
XGBoost | 8.25 | 6.65 |
SVR | 23.28 | 18.11 |
MLP | 25.56 | 18.57 |
CNN | 11.63 | 14.59 |
Tab. 4 Experimental results of energy consumption prediction models
模型 | RMSE | MAE |
---|---|---|
XGBoost | 8.25 | 6.65 |
SVR | 23.28 | 18.11 |
MLP | 25.56 | 18.57 |
CNN | 11.63 | 14.59 |
层数 | 迭代次数 | RMSE | 训练时间/s | 预测时间/s |
---|---|---|---|---|
1 | 100 | 7.69 | 28.81 | 34 |
2 | 100 | 7.39 | 55.47 | 53 |
3 | 100 | 7.27 | 84.39 | 67 |
4 | 100 | 7.35 | 112.99 | 88 |
5 | 100 | 7.99 | 148.53 | 118 |
6 | 100 | 8.34 | 172.24 | 154 |
Tab. 5 Performance of different GRU network layers
层数 | 迭代次数 | RMSE | 训练时间/s | 预测时间/s |
---|---|---|---|---|
1 | 100 | 7.69 | 28.81 | 34 |
2 | 100 | 7.39 | 55.47 | 53 |
3 | 100 | 7.27 | 84.39 | 67 |
4 | 100 | 7.35 | 112.99 | 88 |
5 | 100 | 7.99 | 148.53 | 118 |
6 | 100 | 8.34 | 172.24 | 154 |
模型 | RMSE |
---|---|
Multi-GRU | 7.27 |
LSTM | 10.54 |
CNN-LSTM | 9.43 |
CNN-GRU | 10.81 |
CNN | 14.82 |
MLP | 31.38 |
Transformer | 27.99 |
Tab. 6 Comparison of load model RMSE results
模型 | RMSE |
---|---|
Multi-GRU | 7.27 |
LSTM | 10.54 |
CNN-LSTM | 9.43 |
CNN-GRU | 10.81 |
CNN | 14.82 |
MLP | 31.38 |
Transformer | 27.99 |
模型 | 训练时间/s | 预测时间/s |
---|---|---|
Multi-GRU | 84.39 | 67.0 |
LSTM | 148.63 | 85.0 |
CNN-LSTM | 210.46 | 93.0 |
CNN-GRU | 159.52 | 75.0 |
CNN | 2.16 | 1.0 |
MLP | 1.55 | 0.6 |
Transformer | 1.83 | 1.0 |
Tab. 7 Comparison of load model efficiency
模型 | 训练时间/s | 预测时间/s |
---|---|---|
Multi-GRU | 84.39 | 67.0 |
LSTM | 148.63 | 85.0 |
CNN-LSTM | 210.46 | 93.0 |
CNN-GRU | 159.52 | 75.0 |
CNN | 2.16 | 1.0 |
MLP | 1.55 | 0.6 |
Transformer | 1.83 | 1.0 |
1 | AL-TARAZI M, CHANG J M. Performance-aware energy saving for data center networks[J]. IEEE Transactions on Network and Service Management, 2019, 16(1): 206-219. 10.1109/tnsm.2019.2891826 |
2 | 中国制冷学会数据中心冷却工作组. 中国数据中心冷却技术年度发展研究报告2016[M]. 北京:中国建筑工业出版社, 2016: 1-196. 10.18356/9b3b9062-en |
Data Center Cooling Working Group of Chinese Refrigeration Society. Annual Cooling Technology Development Research Report of China Data Center 2016[M]. Beijing: China Architecture and Building Press, 2016: 1-196. 10.18356/9b3b9062-en | |
3 | 陈东虎. 基于排队论的云数据中心节能管理策略[D]. 重庆:重庆邮电大学, 2020: 1-58. |
CHEN D H. The energy saving management strategy of cloud data center based on queuing[D]. Chongqing: Chongqing University of Posts and Telecommunications, 2020: 1-58. | |
4 | HELLER B, SEETHARAMAN S, MAHADEVAN P, et al. ElasticTree: saving energy in data center networks[C]// Proceedings of the 7th USENIX Conference on Networked Systems Design and Implementation. Berkeley: USENIX Association, 2010: 249-264. |
5 | TU R L, WANG X, YANG Y, et al. Energy-saving model for SDN data centers[J]. The Journal of Supercomputing, 2014, 70(3): 1477-1495. 10.1007/s11227-014-1237-3 |
6 | JING S Y, ALI S, SHE K, et al. State-of-the-art research study for green cloud computing[J]. The Journal of Supercomputing, 2013, 65(1): 445-468. 10.1007/s11227-011-0722-1 |
7 | LIN W W, WANG H Y, ZHANG Y F, et al. A cloud server energy consumption measurement system for heterogeneous cloud environments[J]. Information Sciences, 2018, 468: 47-62. 10.1016/j.ins.2018.08.032 |
8 | LIANG Y, HU Z G. Prediction method of energy consumption based on multiple energy-related features in data center[C]// Proceedings of the 2019 IEEE International Conference on Parallel and Distributed Processing with Applications, Big Data and Cloud Computing, Sustainable Computing and Communications, Social Computing and Networking. Piscataway: IEEE, 2019: 140-146. 10.1109/ispa-bdcloud-sustaincom-socialcom48970.2019.00030 |
9 | DIOUANI S, MEDROMI H. Energy consumption modeling and prediction in the cloud data centers[J]. Journal of Engineering Science and Technology Review, 2020, 13(3): 224-234. 10.25103/jestr.133.25 |
10 | STAMATESCU I, PLOIX S, FĂGĂRĂŞAN I, et al. Data center server energy consumption optimization algorithm[C]// Proceedings of the 26th Mediterranean Conference on Control and Automation. Piscataway: IEEE, 2018:813-818. 10.1109/med.2018.8442890 |
11 | YADAV R, ZHANG W Z, LI K Q, et al. An adaptive heuristic for managing energy consumption and overloaded hosts in a cloud data center[J]. Wireless Networks, 2020, 26(3): 1905-1919. 10.1007/s11276-018-1874-1 |
12 | MAHJOUB Y A E, FOURNEAU J M, CASTEL-TALEB H. Analysis of energy consumption in cloud center with tasks migrations[C]// Proceedings of the 2019 International Conference on Computer Networks, CCIS1039. Cham: Springer, 2019: 301-315. |
13 | DUOLIKUN D, WATANABE R, ENOKIDO T, et al. A model for migration of virtual machines to reduce electric energy consumption[C]// Proceedings of the 10th International Conference on Complex, Intelligent, and Software Intensive Systems. Piscataway: IEEE, 2016: 159-166. 10.1109/cisis.2016.121 |
14 | SONG Y, ZHAO X, WANG B, et al. Trading-off computing and cooling energies by VM migration in data centers[J]. IEICE Transactions on Information and Systems, 2018, E101.D(9): 2224-2234. 10.1587/transinf.2017edp7329 |
15 | CHOI J. Virtual machine placement algorithm for energy saving and reliability of servers in cloud data centers[J]. Journal of Network and Systems Management, 2019, 27(1): 149-165. 10.1007/s10922-018-9462-3 |
16 | CHO K, MERRIËNBOER B VAN, GU̇LÇEHRE Ç, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation[C]// Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA: Association for Computational Linguistics, 2014: 1724-1734. 10.3115/v1/d14-1179 |
17 | CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2016: 785-794. 10.1145/2939672.2939785 |
18 | ARCE J M M, MACABEBE E Q B. Real-time power consumption monitoring and forecasting using regression techniques and machine learning algorithms[C]// Proceedings of the 2019 IEEE International Conference on Internet of Things and Intelligence System. Piscataway: IEEE, 2019: 135-140. 10.1109/iotais47347.2019.8980380 |
19 | YAN L, MENG L. A simplified prediction model for energy use of air conditioner in residential buildings based on monitoring data from the cloud platform[J]. Sustainable Cities and Society, 2020, 60: No.102194. 10.1016/j.scs.2020.102194 |
20 | MOHAMMADI M, RASHID T A, KARIM S H T, et al. A comprehensive survey and taxonomy of the SVM-based intrusion detection systems[J]. Journal of Network and Computer Applications, 2021, 178: No.102983. 10.1016/j.jnca.2021.102983 |
21 | MA Z T, YE C T, MA W B. Support vector regression for predicting building energy consumption in southern China[J]. Energy Procedia, 2019, 158: 3433-3438. 10.1016/j.egypro.2019.01.931 |
22 | GUO N, GUI W F, CHEN W, et al. Using improved support vector regression to predict the transmitted energy consumption data by distributed wireless sensor network[J]. EURASIP Journal on Wireless Communications and Networking, 2020, 2020: No.120. 10.1186/s13638-020-01729-x |
23 | LIU D D, YANG Q Q, YANG F. Predicting building energy consumption by time series model based on machine learning and empirical mode decomposition[C]// Proceedings of the 5th IEEE International Conference on Big Data Analytics. Piscataway: IEEE, 2020: 145-150. 10.1109/icbda49040.2020.9101335 |
24 | GOU G H. SVR-based prediction of carbon emissions from energy consumption in Henan Province[J]. IOP Conference Series: Earth and Environmental Science, 2018, 113: No.012052. 10.1088/1755-1315/113/1/012052 |
25 | HUANG Z K, YANG C H, ZHOU X J, et al. Energy consumption forecasting for the nonferrous metallurgy industry using hybrid support vector regression with an adaptive state transition algorithm[J]. Cognitive Computation, 2019, 12(2): 357-368. 10.1007/s12559-019-09644-0 |
26 | ILBEIGI M, GHOMEISHI M, DEHGHANBANADAKI A. Prediction and optimization of energy consumption in an office building using artificial neural network and a genetic algorithm[J]. Sustainable Cities and Society, 2020, 61: No.102325. 10.1016/j.scs.2020.102325 |
27 | VERGARA G, CÓZAR J, ROMERO-GONZÁLEZ C, et al. Comparing ELM against MLP for electrical power prediction in buildings[C]// Proceedings of the 2015 International Work-Conference on the Interplay Between Natural and Artificial Computation, LNCS9108. Cham: Springer, 2015: 409-418. |
28 | ZENG C L, WU C C, ZUO L L, et al. Predicting energy consumption of multiproduct pipeline using artificial neural networks[J]. Energy, 2014, 66: 791-798. 10.1016/j.energy.2014.01.062 |
29 | DAI Z W, WANG Y M, WU Y F. Life prediction method of hydrogen energy battery based on MLP and LOESS[C]// Proceedings of the 2020 International Conference on Computer Engineering and Networks, AISC1274. Singapore: Springer, 2021: 551-562. |
30 | LIU Y X, DONG J, ZUO D C, et al. Experimental analysis and comparison of load prediction algorithms in cloud data center[C]// Proceedings of the IEEE 19th International Conference on Software Quality, Reliability and Security. Piscataway: IEEE, 2019: 197-203. 10.1109/qrs.2019.00036 |
31 | KOLLIA I, KOLLIAS S. A deep learning approach for load demand forecasting of power systems [C]// Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence. Piscataway: IEEE, 2018: 912-919. 10.1109/ssci.2018.8628644 |
32 | ZHENG J X, CHEN X Y, YU K, et al. Short-term power load forecasting of residential community based on GRU neural network[C]// Proceedings of the 2018 International Conference on Power System Technology. Piscataway: IEEE, 2018: 4862-4868. 10.1109/powercon.2018.8601718 |
33 | BOUKTIF S, FIAZ A, OUNI A, et al. Multi-sequence LSTM-RNN deep learning and metaheuristics for electric load forecasting[J]. Energies, 2020, 13(2): No.391. 10.3390/en13020391 |
34 | INTEHA A, NAHID-Al-MASOOD. A GRU-GA hybrid model based technique for short term electrical load forecasting[C]// Proceedings of the 2nd International Conference on Robotics, Electrical and Signal Processing Techniques. Piscataway: IEEE, 2021: 515-519. 10.1109/icrest51555.2021.9331156 |
35 | 陆继翔,张琪培,杨志宏,等. 基于CNN-LSTM混合神经网络模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(8): 131-137. 10.7500/AEPS20181012004 |
LU J X, ZHANG Q P, YANG Z H, et al. Short-term load forecasting method based on CNN-LSTM hybrid neural network model[J]. Automation of Electric Power Systems, 2019, 43(8): 131-137. 10.7500/AEPS20181012004 | |
36 | 赵兵,王增平,纪维佳,等. 基于注意力机制的CNN-GRU短期电力负荷预测方法[J]. 电网技术, 2019, 43(12): 4370-4376. |
ZHAO B, WANG Z P, JI W J, et al. A short-term power load forecasting method based on attention mechanism of CNN-GRU[J]. Power System Technology, 2019, 43(12): 4370-4376. | |
37 | BRINGYE Z, SIMA D, KOZLOVSZKY M. Power consumption aware big.LITTLE scheduler for Linux operating system[C]// Proceedings of the 2019 IEEE International Work Conference on Bioinspired Intelligence. Piscataway: IEEE, 2019: 139-144. 10.1109/iwobi47054.2019.9114403 |
38 | WANG Y S, LIAO W L, CHANG Y Q. Gated recurrent unit network-based short-term photovoltaic forecasting[J]. Energies, 2018, 11(8): No.2163. 10.3390/en11082163 |
39 | CHO K, MERRIËNBOER B VAN, BAHDANAU D, et al. On the properties of neural machine translation: encoder-decoder approaches[C]// Proceedings of the 8th Workshop on Syntax, Semantics and Structure in Statistical Translation. Stroudsburg, PA: Association for Computational Linguistics, 2014: 103-111. 10.3115/v1/w14-4012 |
[1] | Junna ZHANG, Xinxin WANG, Tianze LI, Xiaoyan ZHAO, Peiyan YUAN. Task offloading method based on dynamic service cache assistance [J]. Journal of Computer Applications, 2024, 44(5): 1493-1500. |
[2] | Mingzhu LEI, Hao WANG, Rong JIA, Lin BAI, Xiaoying PAN. Oversampling algorithm based on synthesizing minority class samples using relationship between features [J]. Journal of Computer Applications, 2024, 44(5): 1428-1436. |
[3] | Xiaoyan ZHAO, Wei HAN, Junna ZHANG, Peiyan YUAN. Collaborative offloading strategy in internet of vehicles based on asynchronous deep reinforcement learning [J]. Journal of Computer Applications, 2024, 44(5): 1501-1510. |
[4] | Bo LI, Jianqiang HUANG, Dongqiang HUANG, Xiaoying WANG. Adaptive computing optimization of sparse matrix-vector multiplication based on heterogeneous platforms [J]. Journal of Computer Applications, 2024, 44(12): 3867-3875. |
[5] | Ming ZHANG, Le FU, Haifeng WANG. Relay control model for concurrent data flow in edge computing [J]. Journal of Computer Applications, 2024, 44(12): 3876-3883. |
[6] | Hanxiao SHI, Leichun WANG. Short-term power load forecasting by graph convolutional network combining LSTM and self-attention mechanism [J]. Journal of Computer Applications, 2024, 44(1): 311-317. |
[7] | Xiaolin LI, Yusang JIANG. Task offloading algorithm for UAV-assisted mobile edge computing [J]. Journal of Computer Applications, 2023, 43(6): 1893-1899. |
[8] | Heping FANG, Shuguang LIU, Yongyi RAN, Kunhua ZHONG. Integrated scheduling optimization of multiple data centers based on deep reinforcement learning [J]. Journal of Computer Applications, 2023, 43(6): 1884-1892. |
[9] | Tengfei CAO, Yanliang LIU, Xiaoying WANG. Edge computing and service offloading algorithm based on improved deep reinforcement learning [J]. Journal of Computer Applications, 2023, 43(5): 1543-1550. |
[10] | Yanan SUN, Jiehong WU, Junling SHI, Lijun GAO. Multi-UAV collaborative task assignment method based on improved self-organizing map [J]. Journal of Computer Applications, 2023, 43(5): 1551-1556. |
[11] | Yunbo LONG, Dan TANG. Load balancing method based on local repair code in distributed storage [J]. Journal of Computer Applications, 2023, 43(3): 767-775. |
[12] | Li YANG, Jianting CHEN, Yang XIANG. Performance optimization strategy of distributed storage for industrial time series big data based on HBase [J]. Journal of Computer Applications, 2023, 43(3): 759-766. |
[13] | Xia HUA, Zhenghao ZHU, Cong XU, Xihuang ZHANG, Zhilei CHAI, Wenjie CHEN. Workload automatic mapper for spiking neural network based on precise communication modeling [J]. Journal of Computer Applications, 2023, 43(3): 827-834. |
[14] | Rui MEN, Shujia FAN, Axida SHAN, Shaoyu DU, Xiumei FAN. Survey on combination of computation offloading and blockchain in internet of things [J]. Journal of Computer Applications, 2023, 43(10): 3008-3016. |
[15] | Pengxin TIAN, Guannan SI, Zhaoliang AN, Jianxin LI, Fengyu ZHOU. Survey of data-driven intelligent cloud-edge collaboration [J]. Journal of Computer Applications, 2023, 43(10): 3162-3169. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||