[1] 崔婧, 赵秀娟, 宋吟秋.中日股价序列相似性的比较分析[J]. 系统工程理论与实践, 2009, 29(12):125-133. (CUI J, ZHAO X J, SONG Y Q. Similarity analysis on China's and Japan's security price series[J]. Systems Engineering - Theory and Practice, 2009, 29(12):125-133.) [2] SIVARAKS H, RATANAMAHATANA C A. Robust and accurate anomaly detection in ECG artifacts using time series motif discovery[J]. Computational and Mathematical Methods in Medicine, 2015, 2015:453214. [3] 陈海燕, 刘晨晖, 孙博.时间序列数据挖掘的相似性度量综述[J]. 控制与决策, 2017, 32(1):1-11. (CHEN H Y, LIU C H, SUN B. Survey on similarity measurement of time series data mining[J]. Control and Decision, 2017, 32(1):1-11.) [4] BERNDT D J, CLIFFORD J. Using dynamic time warping to find patterns in time series[C]//AAAIWS 1994:Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining. Menlo Park, CA:AAAI Press, 1994, 10(16):359-370. [5] FALOUTSOS C, RANGANATHAN M, MANOLOPOULOS Y. Fast subsequence matching in time-series databases[C]//SIGMOD 1994:Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data. New York:ACM, 1994:419-429. [6] 李海林, 梁叶, 王少春.时间序列数据挖掘中的动态时间弯曲研究综述[J]. 控制与决策, 2018, 33(8):1345-1353. (LI H L, LIANG Y, WANG S C. Review on dynamic time warping in time series data mining[J]. Control and Decision, 2018, 33(8):1345-1353.) [7] 沈媛媛, 严严, 王菡子.有监督的距离度量学习算法研究进展[J]. 自动化学报, 2014, 40(12):2673-2686. (SHEN Y Y, YAN Y, WANG H Z. Recent advances on supervised distance metric learning algorithms[J]. Acta Automatica Sinica, 2014, 40(12):2673-2686.) [8] BROMLEY J, GUYON I, LECUN Y, et al. Signature verification using a "siamese" time delay neural network[C]//NIPS 1993:Proceedings of the 6th International Conference on Neural Information Processing Systems. San Francisco, CA:Morgan Kaufmann Publishers, 1994:737-744. [9] CHOPRA S, HADSELL R, LECUN Y. Learning a similarity metric discriminatively, with application to face verification[C]//CVPR 2005:Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2005:539-546. [10] WANG F Q, ZUO W M, LIN L, et al. Joint learning of single-image and cross-image representations for person re-identification[C]//CVPR 2016:Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2016:1288-1296. [11] DONG Y, ZHEN L, SHENG L, et al. Deep metric learning for person re-identification[C]//Proceedings of the 201422nd International Conference on Pattern Recognition. Piscataway, NJ:IEEE, 2014:34-39. [12] HUANG P S, HE X D, GAO J F, et al. Learning deep structured semantic models for Web search using clickthrough data[C]//Proceedings of the 22nd ACM International Conference on Conference on Information & Knowledge Management. New York:ACM, 2013:2333-2338. [13] COVER T, HART P. Nearest neighbor pattern classification[J]. IEEE Transactions on Information Theory, 1967, 13(1):21-27. [14] BATISTA G E, WANG X, KEOGH E J. A complexity-invariant distance measure for time series[EB/OL].[2018-05-10]. https://epubs.siam.org/doi/pdf/10.1137/1.9781611972818.60. [15] MAATEN L, HINTON G. Visualizing data using t-SNE[J]. Journal of Machine Learning Research, 2008, 9:2579-2605. [16] KINGMA D P, BA J. Adam:a method for stochastic optimization[EB/OL].[2018-05-10]. https://arxiv.org/pdf/1412.6980. [17] CHEN Y, KEOGH E, HU B, et al. The UCR time series classification archive[DB/OL].[2018-05-10]. http://www.cs.ucr.edu/~eamonn/time_series_data/. |