Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (8): 2421-2429.DOI: 10.11772/j.issn.1001-9081.2023081065
• Artificial intelligence • Previous Articles Next Articles
Yubo ZHAO, Liping ZHANG(), Sheng YAN, Min HOU, Mao GAO
Received:
2023-08-08
Revised:
2023-11-06
Accepted:
2023-11-15
Online:
2023-12-18
Published:
2024-08-10
Contact:
Liping ZHANG
About author:
ZHAO Yubo, born in 1999, M. S. candidate. His researchinterests include knowledge graph, educational data mining.Supported by:
通讯作者:
张丽萍
作者简介:
赵宇博(1999—),男,内蒙古赤峰人,硕士研究生,CCF会员,主要研究方向:知识图谱、教育数据挖掘基金资助:
CLC Number:
Yubo ZHAO, Liping ZHANG, Sheng YAN, Min HOU, Mao GAO. Relation extraction between discipline knowledge entities based on improved piecewise convolutional neural network and knowledge distillation[J]. Journal of Computer Applications, 2024, 44(8): 2421-2429.
赵宇博, 张丽萍, 闫盛, 侯敏, 高茂. 基于改进分段卷积神经网络和知识蒸馏的学科知识实体间关系抽取[J]. 《计算机应用》唯一官方网站, 2024, 44(8): 2421-2429.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023081065
实体类型 | 关系类型 | 关系值域 | 示例 |
---|---|---|---|
课程 | 包含 | 章,节, 知识点 | 1)《C语言程序设计》包含第一章C语言概述 2)《C语言程序设计》包含第一章C语言概述的第一节——C语言的特点 3)《C语言程序设计》包含输出函数这个知识点 |
章 | 包含,顺序 | 章,节,知识点 | 1)第一章C语言概述包含C语言的特点这一节 2)第一章C语言概述包含输出函数这个知识点 3)第一章C语言概述和第二章程序的灵魂—算法属于顺序关系 |
节 | 包含,顺序 | 节,知识点 | 1)第一章第三节输入和输出函数包含输出函数这个知识点 2)第一章第三节输入和输出函数和第一章第四节C源程序结构特点是顺序关系 |
知识点 | 顺序,相关 | 知识点 | 1)常量和直接常量是顺序关系 2)输入函数和输出函数是相关关系 |
编程问题 | step i | 知识点 | 将华氏温度转换为摄氏温度这道编程题目依次包含预处理命令,主函数,整型变量,变量赋初值,输出函数这几个知识点(step 1为编辑预处理命令;step 2为定义主函数main;step 3为定义两个整型变量分别代表华氏温度和摄氏温度;step 4为对代表华氏温度的变量赋初值;step 5为依据温度转换计算公式调用输出函数输出结果) |
Tab. 1 Examples of relations between entities
实体类型 | 关系类型 | 关系值域 | 示例 |
---|---|---|---|
课程 | 包含 | 章,节, 知识点 | 1)《C语言程序设计》包含第一章C语言概述 2)《C语言程序设计》包含第一章C语言概述的第一节——C语言的特点 3)《C语言程序设计》包含输出函数这个知识点 |
章 | 包含,顺序 | 章,节,知识点 | 1)第一章C语言概述包含C语言的特点这一节 2)第一章C语言概述包含输出函数这个知识点 3)第一章C语言概述和第二章程序的灵魂—算法属于顺序关系 |
节 | 包含,顺序 | 节,知识点 | 1)第一章第三节输入和输出函数包含输出函数这个知识点 2)第一章第三节输入和输出函数和第一章第四节C源程序结构特点是顺序关系 |
知识点 | 顺序,相关 | 知识点 | 1)常量和直接常量是顺序关系 2)输入函数和输出函数是相关关系 |
编程问题 | step i | 知识点 | 将华氏温度转换为摄氏温度这道编程题目依次包含预处理命令,主函数,整型变量,变量赋初值,输出函数这几个知识点(step 1为编辑预处理命令;step 2为定义主函数main;step 3为定义两个整型变量分别代表华氏温度和摄氏温度;step 4为对代表华氏温度的变量赋初值;step 5为依据温度转换计算公式调用输出函数输出结果) |
数据集 | 数据规模 |
---|---|
训练集 | 1 541 |
验证集 | 193 |
测试集 | 192 |
Tab. 2 Data distribution
数据集 | 数据规模 |
---|---|
训练集 | 1 541 |
验证集 | 193 |
测试集 | 192 |
参数 | 值 | 参数 | 值 |
---|---|---|---|
学习率 | 1E-5 | 卷积层数 | 1 |
Epoch | 50 | 卷积核个数 | 230 |
Batch size | 64 | 卷积核尺寸 | 1×3 |
Dropout | 0.15 | 卷积核滑动步长 | 1 |
词嵌入向量维度 | 128 | 温度T | 4 |
位置嵌入向量维度 | 50 |
Tab. 3 Parameter settings
参数 | 值 | 参数 | 值 |
---|---|---|---|
学习率 | 1E-5 | 卷积层数 | 1 |
Epoch | 50 | 卷积核个数 | 230 |
Batch size | 64 | 卷积核尺寸 | 1×3 |
Dropout | 0.15 | 卷积核滑动步长 | 1 |
词嵌入向量维度 | 128 | 温度T | 4 |
位置嵌入向量维度 | 50 |
模型 | Weighted-average precision/% | Weighted-average recall/% | Weighted-average F1/% | total params |
---|---|---|---|---|
PCNN[ | 84 | 85 | 84 | 233 864 |
BiLSTM-CNN-Attention[ | 88 | 87 | 87 | 430 817 |
BiGRU-Att-PCNN[ | 89 | 87 | 88 | 466 772 |
R-BERT[ | 95 | 94 | 93 | 114 204 672 |
EC_BERT[ | 93 | 92 | 92 | 113 531 136 |
KD-RB-l[ | 96 | 95 | 95 | 351 357 596 |
BERT-PCNN | 95 | 94 | 94 | 102542675 |
KD-PCNN | 93 | 91 | 92 | 846434 |
Tab. 4 Performance comparison of relation prediction by various models
模型 | Weighted-average precision/% | Weighted-average recall/% | Weighted-average F1/% | total params |
---|---|---|---|---|
PCNN[ | 84 | 85 | 84 | 233 864 |
BiLSTM-CNN-Attention[ | 88 | 87 | 87 | 430 817 |
BiGRU-Att-PCNN[ | 89 | 87 | 88 | 466 772 |
R-BERT[ | 95 | 94 | 93 | 114 204 672 |
EC_BERT[ | 93 | 92 | 92 | 113 531 136 |
KD-RB-l[ | 96 | 95 | 95 | 351 357 596 |
BERT-PCNN | 95 | 94 | 94 | 102542675 |
KD-PCNN | 93 | 91 | 92 | 846434 |
T值 | Weighted-average precision/% | Weighted-average recall/% | Weighted-average F1/% |
---|---|---|---|
1 | 91 | 87 | 88 |
3 | 93 | 90 | 91 |
4 | 93 | 91 | 92 |
5 | 91 | 88 | 88 |
8 | 92 | 90 | 90 |
10 | 91 | 89 | 89 |
Tab. 5 Influence of temperature parameter on effectiveness of knowledge distillation operation
T值 | Weighted-average precision/% | Weighted-average recall/% | Weighted-average F1/% |
---|---|---|---|
1 | 91 | 87 | 88 |
3 | 93 | 90 | 91 |
4 | 93 | 91 | 92 |
5 | 91 | 88 | 88 |
8 | 92 | 90 | 90 |
10 | 91 | 89 | 89 |
蒸馏方式 | Weighted-average precision | Weighted-average recall | Weighted-average F1 |
---|---|---|---|
只蒸馏标签知识 | 91 | 88 | 88 |
只蒸馏中间层知识 | 91 | 90 | 90 |
蒸馏标签和中间层知识 | 93 | 91 | 92 |
Tab. 6 Results of ablation experiments
蒸馏方式 | Weighted-average precision | Weighted-average recall | Weighted-average F1 |
---|---|---|---|
只蒸馏标签知识 | 91 | 88 | 88 |
只蒸馏中间层知识 | 91 | 90 | 90 |
蒸馏标签和中间层知识 | 93 | 91 | 92 |
文本 | 实体1 | 实体2 | 模型 | 真实标签 | 预测标签 |
---|---|---|---|---|---|
表达式语句是一种由表达式组成的语句,它通常会产生一个结果,并且可以被用于赋值或者用于其他表达式的计算中;函数调用语句是一种调用函数的语句,它通过函数名称和参数列表来调用一个函数,并且可以使用函数返回值来执行其他操作。两者都是计算机程序中的语句类型。 | 表达式 语句 | 函数 调用语句 | PCNN | 相关 | 顺序 |
BERT-PCNN | 相关 | 相关 | |||
KD-PCNN | 相关 | 相关 |
Tab. 7 Case relation extraction results between entities by various models
文本 | 实体1 | 实体2 | 模型 | 真实标签 | 预测标签 |
---|---|---|---|---|---|
表达式语句是一种由表达式组成的语句,它通常会产生一个结果,并且可以被用于赋值或者用于其他表达式的计算中;函数调用语句是一种调用函数的语句,它通过函数名称和参数列表来调用一个函数,并且可以使用函数返回值来执行其他操作。两者都是计算机程序中的语句类型。 | 表达式 语句 | 函数 调用语句 | PCNN | 相关 | 顺序 |
BERT-PCNN | 相关 | 相关 | |||
KD-PCNN | 相关 | 相关 |
1 | BAIG M I, SHUIB L, YADEGARIDEHKORDI E. Big data in education: a state of the art, limitations, and future research directions[J]. International Journal of Educational Technology in Higher Education, 2020, 17: 44. |
2 | LAURI L, VIRKUS S, HEIDMETS M. Information cultures and strategies for coping with information overload: case of Estonian higher education institutions[J]. Journal of Documentation, 2020, 77(2): 518-541. |
3 | JI S, PAN S, CAMBRIA E, et al. A survey on knowledge graphs: representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2): 494-514. |
4 | LIN J, ZHAO Y, HUANG W, et al. Domain knowledge graph-based research progress of knowledge representation[J]. Neural Computing and Applications, 2021, 33: 681-690. |
5 | 鄂海红,张文静,肖思琪,等.深度学习实体关系抽取研究综述[J].软件学报, 2019, 30(6): 1793-1818. |
E H H, ZHANG W J, XIAO S Q,et al.Survey of entity relationship extraction based on deep learning[J]. Journal of Software, 2019, 30(6): 1793-1818. | |
6 | 高茂,张丽萍.融合多模态资源的教育知识图谱的内涵、技术与应用研究[J].计算机应用研究, 2022, 39(8): 2257-2267. |
GAO M, ZHANG L P. Research on connotation, technology and application of educational knowledge graph based on multimodal resources[J]. Application Research of Computers, 2022, 39(8): 2257-2267. | |
7 | 赵宇博,张丽萍,闫盛,等. 个性化学习中学科知识图谱构建与应用综述[J].计算机工程与应用,2023, 59(10): 1-21. |
ZHAO Y B, ZHANG L P, YAN S, et al. Construction and application of discipline knowledge graph in personalized learning[J]. Computer Engineering and Applications,2023, 59(10): 1-21. | |
8 | 赵哲焕, 杨志豪, 孙聪, 等. 生物医学文献中的蛋白质关系抽取研究[J]. 中文信息学报, 2018, 32(7): 82-90. |
ZHAO Z H, YANG Z H, SUN C, et al. Protein-protein interaction extraction from biomedical literature[J]. Journal of Chinese Information Processing, 2018, 32(7): 82-90. | |
9 | PAN L, LI C, LI J, et al. Prerequisite relation learning for concepts in MOOCs[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Stroudsburg: ACL, 2017: 1447-1456. |
10 | 韩萌,李蔚清.基于特征增强的中文STEM课程知识的关系抽取[J].计算机应用研究, 2020, 37(S1): 40-42. |
HAN M, LI W Q. Relationship extraction of Chinese STEM course knowledge based on feature enhancement[J]. Application Research of Computers, 2020, 37(S1): 40-42. | |
11 | SONG M, ZHAO J, GAO X. Research on entity relation extraction in education field based on multi-feature deep learning[C]// Proceedings of the 3rd International Conference on Big Data Technologies. New York: ACM, 2020: 102-106. |
12 | WANG H, QIN K, ZAKARI R Y, et al. Deep neural network-based relation extraction: an overview[J]. Neural Computing and Applications, 2022: 34: 4781-4801. |
13 | SONG D, XU J, PANG J, et al. Classifier-adaptation knowledge distillation framework for relation extraction and event detection with imbalanced data[J]. Information Sciences, 2021, 573: 222-238. |
14 | DEVLIN J, CHANG M-W, LEE K, et al. BERT: pre-training of deep bidirectional transformers for language understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers). Stroudsburg: ACL, 2019: 4171-4186. |
15 | ZENG D, LIU K, CHEN Y, et al. Distant supervision for relation extraction via piecewise convolutional neural networks[C]// Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. Stroudsburg: ACL, 2015: 1753-1762. |
16 | HINTON G, VINYALS O, DEAN J. Distilling the knowledge in a neural network[EB/OL]. (2015-03-09) [2023-11-06]. . |
17 | 国务院. 国务院关于印发新一代人工智能发展规划的通知[J]. 中华人民共和国国务院公报, 2017(22): 7-21. |
Council State. Notice of the state council on issuing the development plan on the new generation of artificial intelligence [J]. The Gazette of the State Council of the People’s Republic of China, 2017(22): 7-21. | |
18 | LUO L, YANG Z, CAO M, et al. A neural network-based joint learning approach for biomedical entity and relation extraction from biomedical literature[J]. Journal of Biomedical Informatics, 2020, 103: 103384. |
19 | 排日旦·阿布都热依木,吐尔地·托合提,艾斯卡尔·艾木都拉.基于深度学习的实体关系抽取方法研究[J].计算机工程与科学, 2023, 45(5): 895-902. |
PERIDE A, TURDI T, ASKAR H.An entity relation extraction method based on deep learning[J]. Computer Engineering & Science,2023, 45(5): 895-902. | |
20 | 葛艳,杜坤钰,杜军威,等.基于混合神经网络的实体关系抽取方法研究[J].中文信息学报,2021,35(10):81-89. |
GE Y, DU K Y, DU J W, et al. Entity relation extraction based on hybrid neural network[J]. Journal of Chinese Information Processing,2021, 35(10): 81-89. | |
21 | BUCKMAN J, ROY A, RAFFEL C, et al. Thermometer encoding: one hot way to resist adversarial examples[C/OL]// Proceedings of the 2015 International Conference on Learning Representations [2023-08-01]. . |
22 | 魏敏,张丽萍,闫盛.基于程序向量树和聚类的学生程序算法识别方法[J].计算机工程与设计, 2022, 43(10): 2790-2798. |
WEI M, ZHANG L P, YAN S. Student program algorithm recognition based on program vector tree and clustering[J]. Computer Engineering and Design,2022,43(10):2790-2798. | |
23 | 陈德光,马金林,马自萍,等.自然语言处理预训练技术综述[J].计算机科学与探索, 2021, 15(8): 1359-1389. |
CHEN D G, MA J L, MA Z P, et al. Review of pre-training techniques for natural language processing[J]. Journal of Frontiers of Computer Science & Technology, 2021, 15(8): 1359-1389. | |
24 | WU S, HE Y. Enriching pre-trained language model with entity information for relation classification[C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 2361-2364. |
25 | 万莹,孙连英,赵平,等.基于信息增强BERT的关系分类[J].中文信息学报, 2021, 35(3): 69-77. |
WAN Y, SUN L P, ZHAO P,et al.Relation classification based on information enhanced BERT[J].Journal of Chinese Information Processing, 2021, 35(3): 69-77. | |
26 | GOU J, YU B, MAYBANK S J, et al. Knowledge distillation: a survey[J]. International Journal of Computer Vision, 2021, 129: 1789-1819. |
27 | ZHANG L, SU J, MIN Z, et al. Exploring self-distillation based relational reasoning training for document-level relation extraction[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023, 37(11): 13967-13975. |
28 | TAN Q, HE R, BING L, et al. Document-level relation extraction with adaptive focal loss and knowledge distillation[C]// Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2022: 1672-1681. |
29 | HAO S, TAN B, TANG K, et al. BertNet: harvesting knowledge graphs with arbitrary relations from pretrained language models[C]// Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. Stroudsburg: ACL, 2023: 5000-5015. |
30 | SCHUSTER M, NAKAJIMA K. Japanese and Korean voice search[C]// Proceedings of the 2012 IEEE International Conference on Acoustics, Speech And Signal Processing. Piscataway: IEEE, 2012: 5149-5152. |
31 | 窦慧,张凌茗,韩峰,等.卷积神经网络的可解释性研究综述[J]. 软件学报,2024,35(1):159-184. |
DOU H, ZHANG L M, HAN F, et al. Survey on convolutional neural network interpretability[J]. Journal of Software, 2024,35(1):159-184. | |
32 | 邵仁荣,刘宇昂,张伟,等.深度学习中知识蒸馏研究综述[J].计算机学报,2022,45(8):1638-1673. |
SHAO R R, LIU Y A, ZHANG W, et al. A survey of knowledge distillation in deep learning[J]. Chinese Journal of Computers,2022,45(8):1638-1673. |
[1] | Jing QIN, Zhiguang QIN, Fali LI, Yueheng PENG. Diagnosis of major depressive disorder based on probabilistic sparse self-attention neural network [J]. Journal of Computer Applications, 2024, 44(9): 2970-2974. |
[2] | Jie WU, Ansi ZHANG, Maodong WU, Yizong ZHANG, Congbao WANG. Overview of research and application of knowledge graph in equipment fault diagnosis [J]. Journal of Computer Applications, 2024, 44(9): 2651-2659. |
[3] | Hang YANG, Wanggen LI, Gensheng ZHANG, Zhige WANG, Xin KAI. Multi-layer information interactive fusion algorithm based on graph neural network for session-based recommendation [J]. Journal of Computer Applications, 2024, 44(9): 2719-2725. |
[4] | Guixiang XUE, Hui WANG, Weifeng ZHOU, Yu LIU, Yan LI. Port traffic flow prediction based on knowledge graph and spatio-temporal diffusion graph convolutional network [J]. Journal of Computer Applications, 2024, 44(9): 2952-2957. |
[5] | Na WANG, Lin JIANG, Yuancheng LI, Yun ZHU. Optimization of tensor virtual machine operator fusion based on graph rewriting and fusion exploration [J]. Journal of Computer Applications, 2024, 44(9): 2802-2809. |
[6] | Yun LI, Fuyou WANG, Peiguang JING, Su WANG, Ao XIAO. Uncertainty-based frame associated short video event detection method [J]. Journal of Computer Applications, 2024, 44(9): 2903-2910. |
[7] | Tingjie TANG, Jiajin HUANG, Jin QIN. Session-based recommendation with graph auxiliary learning [J]. Journal of Computer Applications, 2024, 44(9): 2711-2718. |
[8] | Rui ZHANG, Pengyun ZHANG, Meirong GAO. Self-optimized dual-modal multi-channel non-deep vestibular schwannoma recognition model [J]. Journal of Computer Applications, 2024, 44(9): 2975-2982. |
[9] | Jinjin LI, Guoming SANG, Yijia ZHANG. Multi-domain fake news detection model enhanced by APK-CNN and Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2674-2682. |
[10] | Yu DU, Yan ZHU. Constructing pre-trained dynamic graph neural network to predict disappearance of academic cooperation behavior [J]. Journal of Computer Applications, 2024, 44(9): 2726-2731. |
[11] | Guanglei YAO, Juxia XIONG, Guowu YANG. Flower pollination algorithm based on neural network optimization [J]. Journal of Computer Applications, 2024, 44(9): 2829-2837. |
[12] | Ying HUANG, Jiayu YANG, Jiahao JIN, Bangrui WAN. Siamese mixed information fusion algorithm for RGBT tracking [J]. Journal of Computer Applications, 2024, 44(9): 2878-2885. |
[13] | Jieru JIA, Jianchao YANG, Shuorui ZHANG, Tao YAN, Bin CHEN. Unsupervised person re-identification based on self-distilled vision Transformer [J]. Journal of Computer Applications, 2024, 44(9): 2893-2902. |
[14] | Xingyao YANG, Yu CHEN, Jiong YU, Zulian ZHANG, Jiaying CHEN, Dongxiao WANG. Recommendation model combining self-features and contrastive learning [J]. Journal of Computer Applications, 2024, 44(9): 2704-2710. |
[15] | Chunxue ZHANG, Liqing QIU, Cheng’ai SUN, Caixia JING. Purchase behavior prediction model based on two-stage dynamic interest recognition [J]. Journal of Computer Applications, 2024, 44(8): 2365-2371. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||