[1] 孙大为.大数据流式计算:应用特征和技术挑战[J]. 大数据, 2015, 1(3):99-105. (SUN D W. Big data stream computing:features and challenges[J]. Big Data Research, 2015, 1(3):99-105.) [2] Seagate. Data age 2025[EB/OL].[2018-08-10]. https://www.seagate.com/files/www-content/our-story/trends/files/data-age-2025-white-paper-simplified-chinese.pdf. [3] 孙大为, 张广艳, 郑纬民.大数据流式计算:关键技术及系统实例[J]. 软件学报, 2014, 25(4):839-862. (SUN D W, ZHANG G Y, ZHENG W M. Big data stream computing:technologies and instances[J]. Journal of Software, 2014, 25(4):839-862.) [4] TOSHNIWAL A, TANEJA S, SHUKLA A, et al. Storm@Twitter[C]//Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data. New York:ACM, 2014:147-156. [5] CARBONE P, EWEN S, HARIDI S, et al. Apache FlinkTM:stream and batch processing in a single engine[J]. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 2015, 36(4):28-38. [6] ANIELLO L, BALDONI R, QUERZONI L. Adaptive online scheduling in Storm[C]//Proceedings of the 7th ACM International Conference on Distributed Event-Based Systems. New York:ACM, 2013:207-218. [7] XU J L, CHEN Z H, TANG J, et al. T-Storm:traffic-aware online scheduling in Storm[C]//Proceedings of the 34th IEEE International Conference on Distributed Computing Systems. Piscataway, NJ:IEEE, 2014:535-544. [8] PENG B Y, HOSSEINI M, HONG Z H, et al. R-Storm:resource-aware scheduling in Storm[C]//Proceedings of the 16th Annual Middleware Conference. New York:ACM, 2015:149-161. [9] 鲁亮, 于炯, 卞琛, 等.大数据流式计算框架Storm的任务迁移策略[J]. 计算机研究与发展, 2018, 55(1):71-92. (LU L, YU J, BIAN C, et al. A task migration strategy in big data stream computing with Storm[J]. Journal of Computer Research and Development, 2018, 55(1):71-92.) [10] 李梓杨, 于炯, 卞琛, 等.基于流网络的流式计算动态任务调度策略[J]. 计算机应用, 2018, 38(9):2560-2567. (LI Z Y, YU J, BIAN C, et al. Dynamic task dispatching strategy for stream processing based on flow network[J]. Journal of Computer Applications, 2018, 38(9):2560-2567.) [11] de ASSUNCAO M D, da SILVA VEITH A, BUYYA R. Distributed data stream processing and edge computing:a survey on resource elasticity and future directions[J]. Journal of Network & Computer Applications, 2018, 103:1-17. [12] SHUKLA A, SIMMHAN Y. Model-driven scheduling for distributed stream processing systems[J]. Journal of Parallel & Distributed Computing, 2018, 117:98-114. [13] TRUONG T M, HARWOOD A, SINNOTT R O. Predicting the stability of large-scale distributed stream processing systems on the cloud[C]//Proceedings of the 7th International Conference on Cloud Computing and Services Science. Piscataway, NJ:IEEE, 2017:603-610. [14] SUN D, HUANG R. A stable online scheduling strategy for real-time stream computing over fluctuating big data streams[J]. IEEE Access, 2016, 4:8593-8607. [15] KULKARNI S, BHAGAT N, FU M, et al. Twitter Heron:stream processing at scale[C]//Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. New York:ACM, 2015:239-250. [16] FU M, MITTAL S, KEDIGEHALLI V, et al. Streaming@Twitter[J]. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 2015, 38(4):15-27. [17] FU M, AGRAWAL A, FLORATOU A, et al. Twitter Heron:towards extensible streaming engines[C]//Proceedings of the 2017 IEEE 33rd International Conference on Data Engineering. Piscataway, NJ:IEEE, 2017:35-44. [18] Apache. Apache Aurora[EB/OL].[2018-08-10]. http://aurora.apache.org. [19] HINDMAN B, KONWINSKI A, ZAHARIA M, et al. Mesos:a platform for fine-grained resource sharing in the data center[C]//Proceedings of the 8th USENIX Conference on Networked Systems Design and Implementation. Berkeley:USENIX Association, 2010:429-483. [20] VAVILAPALLI V K, MURTHY A C, AGARWAL S, et al. Apache Hadoop YARN:yet another resource negotiator[C]//Proceedings of the 4th Annual Symposium on Cloud Computing. New York:ACM, 2013:5. [21] KREPS J, NARKHEDE N, RAO J. Kafka:a distributed messaging system for log processing[EB/OL].[2018-05-10]. http://pages.cs.wisc.edu/~akella/CS744/F17/838-CloudPapers/Kafka.pdf. [22] Apache. Apache DistributedLog[EB/OL].[2018-05-10]. http://bookkeeper.apache.org/distributedlog/. [23] Twitter. Implementing a custom scheduler[EB/OL].[2018-05-10]. https://apache.github.io/incubator-heron/docs/contributors/custom-scheduler/. [24] KULKARNI S. Apache/incubator-heron[EB/OL].[2018-05-16]. https://github.com/apache/incubator-heron. [25] KAMBURUGAMUVE S, RAMASAMY K, SWANY M, et al. Low latency stream processing:Apache Heron with Infiniband & Intel Omni-Path[C]//Proceedings of the 10th International Conference on Utility and Cloud Computing. New York:ACM, 2017:101-110. |