[1] KHALEGHI B, KHAMIS A, KARRAY F O, et al. Multisensor data fusion:a review of the state-of-the-art[J]. Information Fusion, 2013, 14(1):28-44. [2] DEMPSTER A P. Upper and lower probabilities induced by a multivalued mapping[J]. The Annals of Mathematical Statistics, 1967, 38(2):325-329. [3] SHAFER G. A Mathematical Theory of Evidence[M]. Princeton:Princeton University Press, 1976:19-63. [4] SARABI-JAMAB A, ARAABI B. How to decide when the sources of evidence are unreliable:a multi-criteria discounting approach in the Dempster-Shafer theory[J]. Information Sciences, 2018, 448/449:233-248. [5] YANG D, JI H B, GAO Y C. A robust D-S fusion algorithm for multi-target multi-sensor with higher reliability[J]. Information Fusion, 2019, 47:32-44. [6] PARK T J, CHANG J H. Dempster-Shafer theory for enhanced statistical model-based voice activity detection[J]. Computer Speech & Language, 2018, 47:47-58. [7] DENG X Y, JIANG W, WANG Z. Zero-sum polymatrix games with link uncertainty:a Dempster-Shafer theory solution[J]. Applied Mathematics and Computation, 2019, 340:101-112. [8] YAGER R R. Satisfying uncertain targets using measure generalized Dempster-Shafer belief structures[J]. Knowledge-Based Systems, 2018, 142:1-6. [9] YAGER R R. Fuzzy relations between Dempster-Shafer belief structures[J]. Knowledge-Based Systems, 2016, 105:60-67. [10] LIU Y T, PAL N R, MARATHE A R, et al. Weighted fuzzy Dempster-Shafer framework for multimodal information integration[J]. IEEE Transactions on Fuzzy Systems, 2018, 26(1):338-352. [11] 宋亚飞,王晓丹,雷蕾.基于直觉模糊集的时域证据组合方法研究[J].自动化学报,2016,42(9):1322-1338.(SONG Y F, WANG X D, LEI L. Combination of temporal evidence sources based on intuitionistic fuzzy sets[J]. Acta Automatica Sinica, 2016, 42(9):1322-1338.) [12] HONG L, LYNCH A. Recursive temporal-spatial information fusion with applications to target identification[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(2):435-445. [13] 洪昭艺,高勋章,黎湘.基于DS理论的混合式时空域信息融合模型[J].信号处理,2011,27(1):14-19.(HONG Z Y, GAO X Z, LI X. Research on temporal-spatial information fusion model based on DS theory[J]. Signal Processing, 2011, 27(1):14-19.) [14] 刘永祥,朱玉鹏,黎湘,等.导弹防御系统中的目标综合识别模型[J].电子与信息学报,2006,28(4):638-642.(LIU Y X, ZHU Y P, LI X, et al. Integrated target discrimination model in missile defense system[J]. Journal of Electronics & Information Technology, 2006, 28(4):638-642.) [15] 吴俊,程咏梅,曲圣杰,等.基于三级信息融合结构的多平台多雷达目标识别算法[J].西北工业大学学报,2012,30(3):367-372.(WU J, CHENG Y M, QU S J, et al. An effective multi-platform multi-radar target identification algorithm based on three level fusion hierarchical structure[J]. Journal of Northwestern Polytechnical University, 2012, 30(3):367-372.) [16] FAN C L, SONG Y F, LEI L, et al. Evidence reasoning for temporal uncertain information based on relative reliability evaluation[J]. Expert Systems With Applications, 2018, 113:264-276. [17] SMETS P. The combination of evidence in transferable belief model[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(5):447-458. [18] 宋亚飞,王晓丹,雷蕾,等.基于相关系数的证据冲突度量方法[J].通信学报,2014,35(5):95-100.(SONG Y F, WANG X D, LEI L, et al. Measurement of evidence conflict based on correlation coefficient[J]. Journal on Communications, 2014, 35(5):95-100.) [19] JOUSSELME A L, GRENIER D, BOSSE E. A new distance between two bodies of evidence[J]. Information Fusion, 2001, 2(2):91-101. [20] MURPHY C K. Combining belief functions when evidence conflicts[J]. Decision Support Systems, 2000, 29(1):1-9. [21] DENG Y, SHI W K, ZHU Z F, et al. Combining belief functions based on distance of evidence[J]. Decision Support Systems, 2004, 38(3):489-493. [22] ZHANG Z J, LIU T H, CHEN D, et al. Novel algorithm for identifying and fusing conflicting data in wireless sensor networks[J]. Sensors, 2014, 14(6):9562-9581. [23] YUAN K J, XIAO F Y, FEI L Q, et al. Conflict management based on belief function entropy in sensor fusion[J]. SpringerPlus, 2016, 5:638-649. |