Journal of Computer Applications ›› 2024, Vol. 44 ›› Issue (1): 182-189.DOI: 10.11772/j.issn.1001-9081.2023010021
Special Issue: 数据科学与技术
• Data science and technology • Previous Articles Next Articles
Kuo TIAN1,2,3, Yinghan WU1,2,3, Feng HU1,2,3()
Received:
2023-01-09
Revised:
2023-04-07
Accepted:
2023-04-21
Online:
2023-06-06
Published:
2024-01-10
Contact:
Feng HU
About author:
TIAN Kuo, born in 1998, M. S. candidate. His research interests include hypernetwork.Supported by:
通讯作者:
胡枫
作者简介:
田阔(1998—),男,河北保定人,硕士研究生,主要研究方向:超网络;基金资助:
CLC Number:
Kuo TIAN, Yinghan WU, Feng HU. Identification method of influence nodes in multilayer hypernetwork based on evidence theory[J]. Journal of Computer Applications, 2024, 44(1): 182-189.
田阔, 吴英晗, 胡枫. 基于证据理论的多层超网络影响力节点识别方法[J]. 《计算机应用》唯一官方网站, 2024, 44(1): 182-189.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2023010021
网络 | 节点数 | 超边数 | 平均超度 | 聚类系数 | 平均路径长度 |
---|---|---|---|---|---|
物理超网络 | 4 091 | 2 759 | 3.35 | 0.76 | 5.82 |
计算机科学超网络 | 4 091 | 2 750 | 3.08 | 0.75 | 6.99 |
聚合超网络 | 4 091 | 3 357 | 4.52 | 0.78 | 4.68 |
Tab. 1 Topological characteristics of arXiv Physics-Computer Science two-layer hypernetwork
网络 | 节点数 | 超边数 | 平均超度 | 聚类系数 | 平均路径长度 |
---|---|---|---|---|---|
物理超网络 | 4 091 | 2 759 | 3.35 | 0.76 | 5.82 |
计算机科学超网络 | 4 091 | 2 750 | 3.08 | 0.75 | 6.99 |
聚合超网络 | 4 091 | 3 357 | 4.52 | 0.78 | 4.68 |
Rank | DC | Ks | CC | MHEC |
---|---|---|---|---|
1 | v601 | v1164,v1165 | v132 | v601 |
2 | v602 | v602,v1009,v1068,v1069, v1163 | v35 | v867 |
3 | v587 | v495,v496,v587 | v108 | v461 |
4 | v74,v703,v867 | — | v144 | v703 |
5 | v1164,v1165 | — | v601 | v602 |
6 | v402 | — | v154 | v402 |
7 | v73 | — | v147,v161 | v135 |
8 | — | — | v135 | v587 |
9 | — | — | v399 | v108 |
10 | — | — | — | v73 |
Tab. 2 Top 10 nodes ranked by node influence by four methods
Rank | DC | Ks | CC | MHEC |
---|---|---|---|---|
1 | v601 | v1164,v1165 | v132 | v601 |
2 | v602 | v602,v1009,v1068,v1069, v1163 | v35 | v867 |
3 | v587 | v495,v496,v587 | v108 | v461 |
4 | v74,v703,v867 | — | v144 | v703 |
5 | v1164,v1165 | — | v601 | v602 |
6 | v402 | — | v154 | v402 |
7 | v73 | — | v147,v161 | v135 |
8 | — | — | v135 | v587 |
9 | — | — | v399 | v108 |
10 | — | — | — | v73 |
指标 | 平均超度 | 聚类系数 | 超网络效率 |
---|---|---|---|
隔离节点前 | 3.23 | 0.76 | 0.20 |
隔离节点后 | 2.99 | 0.73 | 0.16 |
Tab. 3 Statistical properties of network after isolating top 6% influence nodes
指标 | 平均超度 | 聚类系数 | 超网络效率 |
---|---|---|---|
隔离节点前 | 3.23 | 0.76 | 0.20 |
隔离节点后 | 2.99 | 0.73 | 0.16 |
指标 | 指标 | ||
---|---|---|---|
DC | 0.784 8 | CC | 0.999 3 |
Ks | 0.773 6 | MHEC | 0.999 8 |
Tab. 4 Results of monotonicity index calculation for different methods
指标 | 指标 | ||
---|---|---|---|
DC | 0.784 8 | CC | 0.999 3 |
Ks | 0.773 6 | MHEC | 0.999 8 |
1 | KIM C H, JO M, LEE J S, et al. Link overlap influences opinion dynamics on multiplex networks of Ashkin-Teller spins [J]. Physical Review E, 2021, 104: 064304. 10.1103/physreve.104.064304 |
2 | ULLAH A, WANG B, SHENG J F, et al. Identifying vital nodes from local and global perspectives in complex networks [J]. Expert Systems with Applications, 2021, 186: 115778. 10.1016/j.eswa.2021.115778 |
3 | DANZIGER M M, A-L BARABÁSI. Recovery coupling in multilayer networks [J]. Nature Communications, 2022, 13: 955. 10.1038/s41467-022-28379-5 |
4 | QIU Z, FAN T, LI M, et al. Identifying vital nodes by Achlioptas process [J]. New Journal of Physics, 2021, 23: 033036. 10.1088/1367-2630/abe971 |
5 | WEN S, JIANG J, LIU B, et al. Using epidemic betweenness to measures the influence of users in complex networks [J]. Journal of Network and Computer Applications, 2017, 78: 288-299. 10.1016/j.jnca.2016.10.018 |
6 | 王曰芬,王一山,杨洁.基于社区发现和关键节点识别的网络舆情主题发现与实证分析[J].图书与情报, 2020(5): 48-58. |
WANG Y F, WANG Y S, YANG J. Topic discovery and empirical analysis of network public opinion based on community detection and key node identification [J]. Library and Information, 2020(5): 48-58. | |
7 | SCHOUTEN A P, JANSSEN L, VERSPAGET M. Celebrity vs. Influencer endorsements in advertising: The role of identification, credibility, and Product-Endorser fit [J]. International Journal of Advertising, 2020, 39(2): 258-281. 10.1080/02650487.2019.1634898 |
8 | 郝志刚,秦丽.基于多属性综合评价的食品安全标准引用网络重要节点发现方法[J].计算机应用, 2022, 42(4): 1178-1185. |
HAO Z G, QIN L. Method for discovering important nodes in food safety standard reference network based on multi-attribute comprehensive evaluation [J]. Journal of Computer Applications, 2022, 42(4): 1178-1185. | |
9 | CHEN H, DUAN J, DAI Y, et al. A novel type-sensitive PageRank algorithm for importance ranking of heterogeneous network nodes [C]// Advances in Precision Instruments and Optical Engineering. Singapore: Springe, 2022: 491-500. 10.1007/978-981-16-7258-3_46 |
10 | XU Y, FENG Z, QI X. Signless-Laplacian eigenvector centrality: A novel vital nodes identification method for complex networks [J]. Pattern Recognition Letters, 2021, 148: 7-14. 10.1016/j.patrec.2021.04.018 |
11 | YANG X, XIAO F. An improved gravity model to identify influential nodes in complex networks based on k-shell method [J]. Knowledge-Based Systems, 2021, 227: 107198. 10.1016/j.knosys.2021.107198 |
12 | BOCCALETTI S, BIANCONI G, CRIADO R, et al. The structure and dynamics of multilayer networks [J]. Physics Reports, 2014, 544(1): 1-122. 10.1016/j.physrep.2014.07.001 |
13 | MAJHI S, PERC M, GHOSH D. Dynamics on higher-order networks: A review [J]. Journal of the Royal Society Interface, 2022, 19(188): 20220043. 10.1098/rsif.2022.0043 |
14 | 王宇昂.多层复杂网络建模及其重要节点识别方法研究[D].长沙:国防科技大学, 2018: 43-55. |
WANG Y A. Research on modeling of multiplex complex networks and identification of important nodes [D]. Hunan: National University of Defense Technology, 2018: 43-55. | |
15 | LI X, ZHANG X, ZHAO C, et al. Identifying highly influential nodes in multilayer networks based on global propagation [J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2020, 30(6): 061107. 10.1063/5.0005602 |
16 | TUDISCO F, HIGHAM D J. Node and edge nonlinear eigenvector centrality for hypergraphs [J]. Communications Physics, 2021, 4: 201. 10.1038/s42005-021-00704-2 |
17 | XIE X, ZHAN X, ZHANG Z, et al. Vital node identification in hypergraphs via gravity model [J]. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2023, 33(1): 013104. 10.1063/5.0127434 |
18 | 卢文,赵海兴,孟磊,等.具有双峰特性的双层超网络模型[J].物理学报, 2021, 70(1): 018901. 10.7498/aps.70.20201065 |
LU W, ZHAO H X, MENG L, et al. Double-layer hypernetwork model with bimodal peak characteristics [J]. Acta Physica Sinica, 2021, 70(1): 018901. 10.7498/aps.70.20201065 | |
19 | 刘强,方锦清,李永.三层超网络演化模型特性研究[J].复杂系统与复杂性科学, 2015, 12(2): 64-71. 10.13306/j.1672-3813.2015.02.010 |
LIU Q, FANG J Q, LI Y. Some characteristics of three-layer supernetwork evolution model [J]. Complex Systems and Complexity Science, 2015, 12(2): 64-71. 10.13306/j.1672-3813.2015.02.010 | |
20 | ANWAR M S, RAKSHIT S, GHOSH D, et al. Stability analysis of intralayer synchronization in time-varying multilayer networks with generic coupling functions [J]. Physical Review E, 2022, 105(2): 024303. 10.1103/physreve.105.024303 |
21 | VASILYEVA E, KOZLOV A, ALFARO-BITTNER K, et al. Multilayer representation of collaboration networks with higher-order interactions [J]. Scientific Reports, 2021, 11: 5666. 10.1038/s41598-021-85133-5 |
22 | BERGE C. Graphs and Hypergraphs [M]. New York: American Elsevier Publishing Company, 1973: 389. 10.1016/s0924-6509(09)70330-7 |
23 | RAKSHIT S, BERA B K, BOLLT E M, et al. Intralayer synchronization in evolving multiplex hypernetworks: Analytical approach [J]. SIAM Journal on Applied Dynamical Systems, 2020, 19(2): 918-963. 10.1137/18m1224441 |
24 | 周丽娜,李发旭,巩云超,等.基于K-shell的超网络关键节点识别方法[J].复杂系统与复杂性科学, 2021, 18(3): 15-22. |
ZHOU L N, LI F X, GONG Y C, et al. Identification methods of vital nodes based on K-shell in hypernetworks [J]. Complex Systems and Complexity Science, 2021, 18(3): 15-22. | |
25 | DEMPSTER A P. A generalization of Bayesian inference [J]. Journal of the Royal Statistical Society: Series B (Methodological), 1968, 30(2): 205-232. 10.1111/j.2517-6161.1968.tb00722.x |
26 | SHAFER G. A Mathematical Theory of Evidence [M]. Princeton: Princeton University Press, 1976: 75-86. |
27 | BIANCONI G. Multilayer Networks: Structure and Function [M]. New York: Oxford University Press, 2018: 106. 10.1093/oso/9780198753919.003.0011 |
28 | DE DOMENICO M, LANCICHINETTI A, ARENAS A, et al. Identifying modular flows on multilayer networks reveals highly overlapping organization in interconnected systems [J]. Physical Review X, 2015, 5: 011027. 10.1103/physrevx.5.011027 |
29 | JUUL J L, BENSON A R, KLEINBERG J. Hypergraph patterns and collaboration structure [EB/OL]. [2022-11-05]. . 10.3389/fphy.2023.1301994 |
30 | SUO Q, GUO J-L, SHEN A-Z. Information spreading dynamics in hypernetworks [J]. Physica A: Statistical Mechanics and its Applications, 2018, 495: 475-487. 10.1016/j.physa.2017.12.108 |
31 | DE ARRUDA G F, COZZO E, PEIXOTO T P, et al. Disease localization in multilayer networks [J]. Physical Review X, 2017, 7: 011014. 10.1103/physrevx.7.011014 |
32 | CRIADO R, ROMANCE M, VELA-PÉREZ M. Hyperstructures, a new approach to complex systems [J]. International Journal of Bifurcation and Chaos, 2010, 20(3): 877-883. 10.1142/s0218127410026162 |
[1] | Sirui WANG, Shijuan CHENG, Feimeng YUAN. Reliability evaluation method of high-reliability products based on improved evidence fusion [J]. Journal of Computer Applications, 2023, 43(7): 2140-2146. |
[2] | YANG Lei, ZHAO Hongdong. Environment sound recognition based on lightweight deep neural network [J]. Journal of Computer Applications, 2020, 40(11): 3172-3177. |
[3] | LI Xufeng, SONG Yafei, LI Xiaonan. Temporal evidence fusion method with consideration of time sequence preference of decision maker [J]. Journal of Computer Applications, 2019, 39(6): 1626-1631. |
[4] | ZHANG Li, SUN Jun, LI Dawei, NIU Minghang, GAO Yidan. Rolling bearing sub-health recognition algorithm based on fusion deep learning [J]. Journal of Computer Applications, 2018, 38(8): 2224-2229. |
[5] | WANG Shasha, FENG Ziliang, FU Keren. Saliency detection method based on graph node centrality and spatial autocorrelation [J]. Journal of Computer Applications, 2018, 38(12): 3547-3556. |
[6] | TAI Yingying, PANG Ying, DUAN Keke, FU Yunpeng. Dynamic algorithm of load balancing based on D-S evidence theory with improved weight [J]. Journal of Computer Applications, 2018, 38(10): 2976-2981. |
[7] | WANG Jian, ZHANG Zhiyong, QIAO Kuoyuan. Evidence combination rule with similarity collision reduced [J]. Journal of Computer Applications, 2018, 38(10): 2794-2800. |
[8] | WANG Xuqiao, WANG Jinkun. Integrated indoor positioning algorithm based on D-S evidence theory [J]. Journal of Computer Applications, 2017, 37(4): 1198-1201. |
[9] | ZHU Lun. Hesitant fuzzy decision-making method based on regret theory and evidence theory [J]. Journal of Computer Applications, 2017, 37(2): 540-545. |
[10] | GAO Mingxia, CHEN Furong. Credibility evaluating method of Chinese microblog based on information fusion [J]. Journal of Computer Applications, 2016, 36(8): 2071-2075. |
[11] | XIA Haiying, XU Luhui. Facial expression recognition based on feature fusion of active shape model differential texture and local directional pattern [J]. Journal of Computer Applications, 2015, 35(3): 783-786. |
[12] | LIU Zhexi, YANG Jianhong, YANG Debin, LI Min, MIN Xianchun. Applicability evaluating method of Dempster's combination rule for bodies of evidence with non-singleton elements [J]. Journal of Computer Applications, 2015, 35(2): 461-465. |
[13] | WANG Yongwei LIU Yunan ZHAO Cairong SI Cheng QIU Wei. Situation assessment method based on improved evidence theory [J]. Journal of Computer Applications, 2014, 34(2): 491-495. |
[14] | WANG Liang LU Hua-xiang JING Wei-ping CHEN Tian-xiang. Information fusion based interference solution in electronic toll collection system [J]. Journal of Computer Applications, 2012, 32(09): 2660-2663. |
[15] | QIAO Kui-xian YIN Shi-bai QU Sheng-jie. Multi-scale fused edge detection algorithm based on conflict redistribution DSmT [J]. Journal of Computer Applications, 2012, 32(04): 1050-1052. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||