[1] 马建刚.检察实务中的大数据[M].北京:中国检察出版社,2017:17-23.(MA J G. Procuratorial Big Data[M]. Beijing:China Procurational Press, 2017:17-23.) [2] BOELLA G, CARO L D, HUMPHREYS L, et al. Eunomos, a legal document and knowledge management system for the Web to provide relevant, reliable and up-to-date information on the law[J]. Artificial Intelligence and Law, 2016, 24(3):245-283. [3] JING L P, HUANG H K, SHI H B. Improved feature selection approach TF-IDF in text mining[C]//Proceedings of the 2003 International Conference on Machine Learning and Cybernetics. Piscataway, NJ:IEEE, 2003:944-946. [4] GALGANI F, COMPTON P, HOFFMANN A. LEXA:building knowledge bases for automatic legal citation classification[J]. Expert Systems with Applications, 2015, 42(17/18):6391-6407. [5] HAMMOUDA K M, KAMEL M S. Phrase-based document similarity based on an index graph model[C]//Proceedings of the 2002 IEEE International Conference on Data Mining. Washington, DC:IEEE Computer Society, 2002:203-210. [6] BLEI D M, NG A Y, JORDAN M I, et al. Latent Dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3(4/5):993-1022. [7] ROITBLAT H L, KERSHAW A, OOT P. Document categorization in legal electronic discovery:computer classification vs. manual review[J]. Journal of the American Society for Information Science and Technology, 2010, 61(1):70-80. [8] NOORTWIJK K V, NOORTWIJK K C. Automatic document classification in integrated legal content collections[C]//ICAIL 2017:Proceedings of the 16th International Conference on Artificial Intelligence and Law. New York:ACM, 2017:129-134. [9] SULEA O, ZAMPIERI M, MALMASI S, et al. Exploring the use of text classification in the legal domain[C]//ASAIL 2017:Proceedings of the Second Workshop on Automated Detection, Extraction and Analysis of Semantic Information in Legal Texts. New York:ACM, 2017:419-424. [10] SARIC F, DALBELO BASIC B, MOENS M F, et al. Multi-label classification of croatian legal documents using EuroVoc thesaurus[C]//SPLeT 2014:Proceedings of the 2014 Workshop on Semantic Processing of Legal Texts. Reykjavik:European Language Resources Association, 2014:716-723. [11] BAJWA I S, KARIM F, NAEEM M A, et al. A semi supervised approach for catchphrase classification in legal text documents[J]. Journal of Computers, 2017, 12(5):451-461. [12] SILVESTRO L D, SPAMPINATO D, TORRISI A. Automatic classification of legal textual documents using C4.5[EB/OL].[2018-10-15]. http://www.ittig.cnr.it/Ricerca/Testi/Spampinato-Di_Silvestro-Torrisi2009.pdf. [13] NALLAPATI R, MANNING C D. Legal docket-entry classifica-tion:where machine learning stumbles[C]//EMNLP 2008:Proceedings of the 2008 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA:Association for Computational Linguistics, 2008:438-446. [14] 马建刚,张鹏,马应龙.基于知识块摘要和词转移距离的高效司法文档分类[J].计算机应用,2019,39(5):1293-1298.(MA J G, ZHANG P, MA Y L. Efficient judicial document classification based on knowledge block summarization and word mover's distance[J]. Journal of Computer Applications, 2019, 39(5):1293-1298.) [15] PENG N, POON H, QUIRK C, et al. Cross-sentence n-ary relation extraction with graph LSTMs[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA:Association for Computational Linguistics, 2017:101-115. [16] SUN J J. Jieba Chinese word segmentation tool[EB/OL].[2018-10-15]. https://github.com/fxsjy/jieba. |