[1] CAI D, HE X. Manifold adaptive experimental design for text categorization[J]. IEEE Transactions on Knowledge and Data Engineering, 2012, 24(4):707-719. [2] 张海龙,王莲芝.自动文本分类特征选择方法研究[J].计算机工程与设计,2006,27(20):3840-3841.(ZHANG H L, WANG L Z. Automatic text categorization feature selection methods research[J]. Computer Engineering and Design, 2006, 27(20):3840-3841.) [3] LIU J, SHANG J, HAN J. Phrase Mining from Massive Text and Its Applications[M]. San Rafael, CA:Morgan & Claypool Publishers, 2017:1-89. [4] BROWN G, POCOCK A, ZHAO M J, et al. Conditional likelihood maximisation:a unifying framework for information theoretic feature selection[J]. Journal of Machine Learning Research, 2012, 13(1):27-66. [5] YANG Y, PEDERSEN J O. A comparative study on feature selection in text categorization[C]//ICML 1997:Proceedings of the 1997 International Conference on Machine Learning. San Francisco:Morgan Kaufmann, 1997:412-420. [6] TANG B, KAY S, HE H. Toward optimal feature selection in naive Bayes for text categorization[J]. IEEE Transactions on Knowledge and Data Engineering, 2016, 28(9):2508-2521. [7] WANG D, ZHANG H, LIU R, et al. Feature selection based on term frequency and t-test for text categorization[C]//CIKM 2012:Proceedings of the 21st International Conference on Information and Knowledge Management. New York:ACM, 2012:1482-1486. [8] 辛竹,周亚建.文本分类中互信息特征选择方法的研究与算法改进[J].计算机应用,2013,33(S2):116-118.(XIN Z, ZHOU Y J. Study and improvement of mutual information for feature selection in text categorization[J]. Journal of Computer Applications, 2013, 33(S2):116-118.) [9] VINH N X, ZHOU S, CHAN J, et al. Can high-order dependencies improve mutual information based feature selection?[J]. Pattern Recognition, 2016, 53:46-58. [10] BENNASAR M, HICKS Y, SETCHI R. Feature selection using joint mutual information maximization[J]. Expert Systems with Applications, 2015, 42(22):8520-8532. [11] ZENG Z, ZHANG H, ZHANG R, et al. A novel feature selection method considering feature interaction[J]. Pattern Recognition, 2015, 48(8):2656-2666. [12] JAKULIN A. Machine learning based on attribute interactions[D]. Ljubljana:University of Ljubljana, 2005:37-38. [13] BALAGANI K S, PHOHA V V. On the feature selection criterion based on an approximation of multidimensional mutual information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(7):1342-1343. [14] HAGAR J D, WISSINK T L, KUHN D R, et al. Introducing combinatorial testing in a large organization[J]. Computer, 2015, 48(4):64-72. [15] MONTGOMERY D C. Design and Analysis of Experiments[M]. 9th ed. Hoboken, NJ:John Wiley & Sons, 2017:179-220. [16] SHISHKIN A, BEZZUBTSEVA A, DRUTSA A, et al. Efficient high-order interaction-aware feature selection based on conditional mutual information[C]//NIPS 2016:Proceedings of the 30th Annual Conference on Neural Information Processing Systems. Red Hook, NY:Curran Associates, 2016:4637-4645. [17] KLEEREKOPER A, PAPPAS M, POCOCK A, et al. A scalable implementation of information theoretic feature selection for high dimensional data[C]//IEEE BigData 2015:Proceedings of the 2015 IEEE International Conference on Big Data. Piscataway, NJ:IEEE, 2015:339-346. [18] RAMREZ-GALLEGO S, MOURIO-TALN H, MARTNEZ-REGO D, et al. An information theory-based feature selection framework for big data under apache spark[J/OL]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2017:1-13[2018-01-15]. http://ieeexplore.ieee.org/document/7970198/. [19] LI J, CHENG K, WANG S, et al. Feature selection:a data perspective[J]. ACM Computing Surveys, 2018, 50(6):Article No. 94. |