[1] ZHENG Y, CAPRA L, WOLFSON O, et al. Urban computing: concepts, methodologies, and applications[J]. ACM Transactions on Intelligent Systems & Technology, 2014, 5(3):1-55. [2] SHANG J, ZHENG Y, TONG W, et al. Inferring gas consumption and pollution emission of vehicles throughout a city[C]// Proceedings of the 2014 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 1027-1036. [3] ZHENG Y. Trajectory data mining: an overview[J]. ACM Transactions on Intelligent Systems and Technology, 2015, 6(3): Article No. 29. [4] 高强,张凤荔,王瑞锦,等.轨迹大数据:数据处理关键技术研究综述[J]. 软件学报, 2017,28(4):959-992. (GAO Q, ZHANG F Z, WANG R J, et al. Trajectory big data: a review of key technologies in data processing[J]. Journal of Software,2017, 28(4):959-992.) [5] 毛嘉莉,金澈清,章志刚,等.轨迹大数据异常检测:研究进展及系统框架[J].软件学报,2017,28(1):17-34.(MAO J L, JIN C Q, ZHANG Z G, et al. Trajectory big data: a review of key technologies in data processing[J]. Journal of Software, 2017, 28(1):17-34.) [6] YUAN J, ZHENG Y, ZHANG C, et al. T-drive: driving directions based on taxi trajectories[C]// Proceedings of the 2010 ACM SIGSPATIAL Conference on Advances in Geographical Information Systems. New York: ACM, 2010:99-108. [7] YUAN J, ZHENG Y, XIE X, et al. T-drive: enhancing driving directions with taxi drivers' intelligence[J]. IEEE Transactions on Knowledge & Data Engineering, 2013, 25(1):220-232. [8] MOREIRA-MATIAS L, GAMA J, FERREIRA M, et al. Predicting taxi-passenger demand using streaming data[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14(3):1393-1402. [9] FERREIRA M, DAMAS L. Time-evolving O-D matrix estimation using high-speed GPS data streams[J]. Expert Systems with Applications, 2016, 44(C):275-288. [10] YAO H, TANG X, WEI H, et al. Modeling spatial-temporal dynamics for traffic prediction[J/OL]. arXiv Preprint, 2018, 2018: arXiv: 1803.01254[2018-12-03]. https://arxiv.org/abs/1803.01254. [11] YAO H, WU F, KE J, et al. Deep multi-view spatial-temporal network for taxi demand prediction[J/OL]. arXiv Preprint, 2018, 2018: arXiv: 1802.08714[2018-12-03]. https://arxiv.org/abs/1802.08714. [12] ZHAN X, ZHENG Y, YI X, et al. Citywide traffic volume estimation using trajectory data[J]. IEEE Transactions on Knowledge & Data Engineering, 2017, 29(2):272-285. [13] MENG C, YI X, SU L, et al. City-wide traffic volume inference with loop detector data and taxi trajectories[C]// Proceedings of the 2017 ACM SIGSPATIAL Conference on Advances in Geographical Information Systems. New York: ACM, 2017: 1-10. [14] 朱美玲,刘晨,王雄斌,等.基于车牌识别流数据的车辆伴随模式发现方法[J].软件学报,2017,28(6):1498-1515. (ZHU M L, LIU C, WANG X B, et al. Vehicle accompanying pattern discovery method based on license plate recognition flow data[J]. Journal of Software,2017, 28(6):1498-1515.) [15] PEI J, HAN J, MORTAZAVI-ASL B, et al. Mining sequential patterns by pattern-growth: the prefix span approach[J]. IEEE Transactions on Knowledge & Data Engineering, 2004, 16(11):1424-1440. [16] AYRES J. Sequential pattern mining using a bitmap representation[C]// Proceedings of the 2002 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2002:429-435. [17] ZAKI M J. SPADE: an efficient algorithm for mining frequent sequences[J]. Machine Learning, 2001, 42(1/2):31-60. [18] WANG J, HAN J, LI C. Frequent closed sequence mining without candidate maintenance[J]. IEEE Transactions on Knowledge Data Engineering, 2007, 19(8):1042-1056. [19] GOMARIZ A, CAMPOS M, MARIN R, et al. ClaSP: an efficient algorithm for mining frequent closed sequences[C]// Proceedings of the 2013 Pacific-Asia Conference on Knowledge Discovery and Data Mining. Berlin: Springer, 2013:50-61. [20] FOURNIER-VIGER P, WU C W, GOMARIZ A, et al. VMSP: efficient vertical mining of maximal sequential patterns[C]// Proceedings of the 2014 Canadian Conference on Artificial Intelligence. Berlin: Springer, 2014: 83-94. [21] FOURNIER-VIGER P, WU C W, TSENG V S. Mining maximal sequential patterns without candidate maintenance[C]// Proceedings of the 2013 Advanced Data Mining and Applications. Berlin: Springer, 2013:169-180. [22] 济南市政府门户网站.济南将新增500辆出租车[Z/OL].[2018-12-03]. http://www.jinan.gov.cn/art/2014/5/24/art_1862_216217.html. (Jinan City Government Portal. Jinan will add 500 taxis[Z/OL].[2018-12-03]. http://www.jinan.gov.cn/art/2014/5/24/art_1862_216217.html.) [23] 济南时报.济南年内要增500辆出租车近期开听证会听民意[N/OL].[2018-12-03]. http://www.sdnews.com.cn/sd/jinan/201307/t20130725_1292174.htm. (Jinan Times. Jinan will increase 500 taxis during the year recent hearings to hear public opinion[N/OL].[2018-12-03]. http://www.sdnews.com.cn/sd/jinan/201307/t20130725_1292174.htm.) [24] 秦政,王晓芳.网约车注册司机已20万人超半数驾驶员没济南户籍[Z/OL].[2018-12-03].http://news.e23.cn/jnnews/2016-10-25/2016A2500027.html. (QIN Z, WANG X F. The registered driver of the network car has 200,000. More than half of the drivers have no Jinan household registration[Z/OL].[2018-12-03]. http://news.e23.cn/jnnews/2016-10-25/2016A2500027.html.) [25] ZHANG J, ZHENG Y, QI D. Deep spatio-temporal residual networks for citywide crowd flows prediction[J/OL]. arXiv Preprint, 2016, 2016: arXiv: 1610.00081[2018-12-03]. https://arxiv.org/abs/1610.00081. [26] XIE M, YIN H, WANG H, et al. Learning graph-based POI embedding for location-based recommendation[C]// Proceedings of the 2016 ACM International on Conference on Information and Knowledge Management. New York: ACM, 2016:15-24. [27] WANG W, YIN H, CHEN L, et al. ST-SAGE: a spatial-temporal sparse additive generative model for spatial item recommendation[J]. ACM Transactions on Intelligent Systems and Technology, 2017, 8(3): Article No. 48. |