[1] JIN X, GALLAGHER A, CAO L, et al. The wisdom of social multimedia:using flickr for prediction and forecast[C]//Proceedings of the 18th ACM International Conference on Multimedia. New York:ACM, 2010:1235-1244. [2] YUAN J, MCDONOUGH S, YOU Q, et al. Sentribute:image sentiment analysis from a mid-level perspective[C]//Proceedings of the 2nd International Workshop on Issues of Sentiment Discovery and Opinion Mining. New York:ACM, 2013:Article No.10. [3] YANG J, SHE D, LAI Y, et al. Weakly supervised coupled networks for visual sentiment analysis[C]//Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2018:7584-7592. [4] WANG X, JIA J, HU P, et al. Understanding the emotional impact of images[C]//Proceedings of the 20th ACM International Conference on Multimedia. New York:ACM, 2012:1369-1370. [5] CHENG Y, CHEN S. Image classification using color, texture and regions[J]. Image & Vision Computing, 2003, 21(9):759-776. [6] IQBAL Q, AGGARWAL J K. Retrieval by classification of images containing large manmade objects using perceptual grouping[J]. Pattern Recognition, 2002, 35(7):1463-1479. [7] KARPATHY A, TODERICI G, SHETTY S, et al. Large-scale video classification with convolutional neural networks[C]//Proceedings of the 2014 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2014:1725-1732. [8] CHEN M, ZHANG L, ALLEBACH J P. Learning deep features for image emotion classification[C]//Proceedings of the 2015 IEEE International Conference on Image Processing. Piscataway, NJ:IEEE, 2015:4491-4495. [9] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Washington, DC:IEEE Computer Society, 2015:1-9. [10] YOU Q, LUOO J, JIN H, et al. Building a large scale dataset for image emotion recognition:the fine print and the benchmark[J]. arXiv E-print, 2018:arXiv:1605.02677. [11] 吕鹏霄.图像情感分类研究[D].秦皇岛:燕山大学,2014:1-15. (LYU P X. Research on image emotion categorization[D]. Qinhuangdao:Yanshan University, 2014:1-15.) [12] YANULEVSKAYA V, van GEMERT J C, ROTH K, et al. Emotional valence categorization using holistic image features[C]//Proceedings of the 2008 15th IEEE International Conference on Image Processing. Piscataway, NJ:IEEE, 2008:101-104. [13] BORTH D, JI R, CHEN T, et al. Large-scale visual sentiment ontology and detectors using adjective noun pairs[C]//Proceedings of the 21st ACM International Conference on Multimedia. New York:ACM, 2013:223-232. [14] CHEN T, BORTH D, DARRELL T, et al. DeepSentiBank:visual sentiment concept classification with deep convolutional neural networks[J]. arXiv E-print, 2014:arXiv:1410.8586. [15] YOU Q, LUO J, JIN H, et al. Robust image sentiment analysis using progressively trained and domain transferred deep networks[C]//Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence. Menlo Park, CA:AAAI, 2015:381-388. [16] CAMPOS V, SALVADOR A, GIRO-I-NIETO X, et al. Diving deep into sentiment:understanding fine-tuned CNNs for visual sentiment prediction[C]//Proceedings of the 1st International Workshop on Affect and Sentiment in Multimedia. New York:ACM, 2015:57-62. [17] CAMPOS V, JOU B, GIRó-I-NIETO X. From pixels to sentiment:fine-tuning CNNs for visual sentiment prediction[J]. Image & Vision Computing, 2017, 65:15-22. [18] SUN M, YANG J, WANG K, et al. Discovering affective regions in deep convolutional neural networks for visual sentiment prediction[C]//Proceedings of the 2016 IEEE International Conference on Multimedia and Expo. Piscataway, NJ:IEEE, 2016:1-6. [19] LI B, XIONG W, HU W, et al. Context-aware affective images classification based on bilayer sparse representation[C]//Proceedings of the 2012 ACM International Conference on Multimedia. New York:ACM, 2012:721-724. [20] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv E-print, 2018:arXiv:1409.1556. [21] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[C]//Proceedings of the 2015 International Conference on Neural Information Processing Systems. Cambridge, MA:MIT Press, 2015:91-99. [22] HE K, ZHANG X, REN S, et al. Spatial pyramid pooling in deep convolutional networks for visual recognition[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(9):1904-1916. [23] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. North Miami Beach, FL:Curran Associates Inc., 2012:1097-1105. |