[1] Apache Software Foundation. Apache Tez[EB/OL].[2017-12-21]. http://tez.apache.org/. [2] DEAN J, GHEMAWAT S. MapReduce:simplified data processing on large clusters[C]//Proceedings of the 6th Conference on Symposium on Operating Systems Design & Implementation. Berkeley, CA:USENIX Association, 2004, 6:10-10. [3] ISARD M, BUDIU M, YU Y, et al. Dryad:distributed data-parallel programs from sequential building blocks[C]//Proceedings of the 2nd ACM Special Interest Groups in Operating Systems (SIGOPS)/European Conference on Computer Systems. New York:ACM, 2007:59-72. [4] ZAHARIA M, CHOWDHURY M, DAS T, et al. Resilient distributed datasets:a fault-tolerant abstraction for in-memory cluster computing[C]//Proceedings of the 9th USENIX Symposium on Networked Systems Design and Implementation. Berkeley, CA:USENIX Association, 2012:15-28. [5] GHODSI A, ZAHARIA M, HINDMAN B, et al. Dominant resource fairness:Fair allocation of multiple resource types[C]//Proceedings of the 8th USENIX Symposium on Networked Systems Design and Implementation. Berkeley, CA:USENIX Association, 2011:323-336. [6] GHODSI A, ZAHARIA M, SHENKER S, et al. Choosy:max-min fair sharing for datacenter jobs with constraints[C]//Proceedings of the 8th ACM European Conference on Computer Systems. New York:ACM, 2013:365-378. [7] HINDMAN B, KONWINSKI A, ZAHARIA M, et al. Mesos:A platform for fine-grained resource sharing in the data center[C]//Proceedings of the 8th USENIX Symposium on Networked Systems Design and Implementation. Berkeley, CA:USENIX Association, 2011:295-308. [8] VAVILAPALLI V K, MURTHY A C, DOUGLAS C, et al. Apache hadoop YARN:yet another resource negotiator[C]//Proceedings of the 4th Annual Symposium on Cloud Computing. New York:ACM, 2013:1-16. [9] WANG W, LIANG B, LI B. Multi-resource fair allocation in heterogeneous cloud computing systems[J]. IEEE Transactions on Parallel and Distributed Systems, 2015, 26(10):2822-2835. [10] ZAHARIA M, BORTHAKUR D, SARMA J S, et al. Delay scheduling:a simple technique for achieving locality and fairness in cluster scheduling[C]//Proceedings of the 5th ACM European Conference on Computer Systems. New York:ACM, 2013:265-278. [11] Apache Software Foundation. Hadoop MapReduce Next Generation-Fair Scheduler[EB/OL].[2018-10-21]. http://tinyurl.com/j9vzsl9. [12] GRANDL R, CHOWDHURY M, AKELLA A, et al. Altruistic scheduling in multi-resource clusters[C]//Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation. Berkeley, CA:USENIX Association, 2016:65-80. [13] GRANDL R, KANDULA S, RAO S, et al. Graphene:packing and dependency-aware scheduling for data-parallel clusters[C]//Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation. Berkeley, CA:USENIX Association, 2016:81-97. [14] AGRAWAL K, LI J, LU K, et al. Scheduling parallel DAG jobs online to minimize average flow time[C]//Proceedings of the 27th annual ACM-SIAM Symposium on Discrete algorithms. Philadelphia, PA:Society for Industrial and Applied Mathematics, 2016:176-189. [15] FERGUSON A D, BODIK P, KANDULA S, et al. Jockey:guaranteed job latency in data parallel clusters[C]//Proceedings of the 7th ACM European Conference on Computer Systems. New York:ACM, 2012:99-112. [16] GRANDL R, ANANTHANARAYANAN G, KANDULA S, et al. Multi-resource packing for cluster schedulers[C]//Proceedings of the 2014 ACM Conference on SIGCOMM. New York:ACM, 2014:455-466. [17] JALAPARTI V, BODIK P, MENACHE I, et al. Network-aware scheduling for data-parallel jobs:Plan when you can[C]//Proceedings of the 2015 ACM Conference on SIGCOMM. New York:ACM, 2015:407-420. [18] RAI I A, URVOY-KELLER G, BIERSACK E W. Analysis of LAS scheduling for job size distributions with high variance[C]//Proceedings of the 2003 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems. New York:ACM, 2003:218-228. [19] BAI W, CHEN L, CHEN K, et al. Information-agnostic flow scheduling for commodity data centers[C]//Proceedings of the 12th USENIX Symposium on Networked Systems Design and Implementation. Berkeley, CA:USENIX Association, 2015:455-468. [20] CHOWDHURY M, STOICA I. Efficient coflow scheduling without prior knowledge[C]//Proceedings of the 2015 ACM Conference on Special Interest Group on Data Communication. New York:ACM, 2015:393-406. [21] Apache Software Foundation. Apache Hadoop NextGen MapReduce (YARN)[EB/OL].[2017-12-21]. http://tinyurl.com/zyy8kbc. [22] 吴信东,嵇圣硙.MapReduce与Spark用于大数据分析值比较[J].软件学报,2018,29(6):1770-1791. (WU X D, JI S W. Comparive study on MapReduce and Spark for bid data analytics[J]. Journal of Software, 2018, 29(6):1770-1791.) [23] ISARD M, PRABHAKARAN V, CURREY J, et al. Quincy:fair scheduling for distributed computing clusters[C]//Proceedings of the ACM SIGOPS 22nd Symposium on Operating Systems Principles. New York:ACM, 2009:261-276. [24] AHMAD F, CHAKRADHAR S, RAGHUNATHAN A, et al. Shufflewatcher:Shuffle-aware scheduling in multi-tenant mapreduce clusters[C]//USENIX Proceedings of 2014 USENIX Annual Technical Conference. Berkeley, CA:USENIX Association, 2014:1-12. [25] BLUMOFE R D, LEISERSON C E. Scheduling multithreaded computations by work stealing[J]. Journal of the ACM. 1999, 46(5):720-748. [26] EDMONDS J, PRUHS K. Scalably scheduling processes with arbitrary speedup curves[J]. ACM Transactions on Algorithms, 2012, 8(3):256-265. [27] 王习特,申德荣,于戈,等.MapReduce集群中最大收益问题的研究[J].计算机学报,2015,38(1):109-121. (WANG X T, SHEN D R, YU G, et al. Research on maximum benefit problem in a MapReduce cluster[J]. Chinese Journal of Computers, 2015, 38(1):109-121.) [28] VAZIRANI V V. Approximation Algorithms[M]. Berlin:Springer, 2003:74-78. [29] NAIR J, WIERMAN A, ZWART B. The fundamentals of heavy-tails:properties, emergence, and identification[C]//Proceedings of the ACM SIGMETRICS/International Conference on Measurement and Modeling of Computer Systems. New York:ACM, 2013:387-388. [30] WIKIPEDIA. Max-min fairness[EB/OL].[2017-12-21]. http://tinyurl.com/krkdmho. [31] Apache Software Foundation. Hadoop MapReduce Next Generation-Capacity Scheduler[EB/OL].[2018-12-01]. http://tinyurl.com/j739ojm. [32] Apache Software Foundation. Apache Spark[EB/OL].[2018-11-07]. http://spark.apache.org/. |