[1] XIAO Z, SONG W, CHEN Q. Dynamic resource allocation using virtual machines for cloud computing environment[J]. IEEE Transactions on Parallel and Distributed Systems, 2013, 24(6): 1107-1117. [2] GHODSI A, ZAHARIA M, HINDMAN B, et al. Dominant resource fairness: fair allocation of multiple resource types[C]//Proceedings of the 8th USENIX Conference on Networked Systems Design and Implementation. Berkeley: USENIX, 2011:24-37. [3] WANG W, LIANG B, LI B. Multi-resource fair allocation in heterogeneous cloud computing systems[J]. IEEE Transactions on Parallel and Distributed Systems, 2015:26(10): 2822-2835. [4] 王金海, 黄传河, 王晶, 等. 异构云计算体系结构及其多资源联合公平分配策略[J].计算机研究与发展, 2015, 52(6): 1288-1302.(WANG J H, HUANG C H, WANG J, et al. A heterogeneous cloud computing architecture and multi-resource-joint fairness allocation strategy[J]. Journal of Computer Research and Development, 2015, 52(6): 1288-1302.) [5] KOKSAL C E, KASSAB H, BALAKRISHNAM H, et al. An analysis of short-term fairness in wireless media access protocols [C]//SIGMETRICS 2000: Proceedings of the 2000 ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Systems. New York: ACM, 2000: 118-119. [6] BREDEL M, FIDLER M. Understanding fairness and its impact on quality of service in IEEE 802.11 [C]//Proceedings of the IEEE INFOCOM 2009. Piscataway, NJ: IEEE, 2009: 1098-1106. [7] PAO W, LOU W, CHEN Y, et al. Resource allocation for multiple input multiple output-orthogonal frequency division multiplexing-based space division multiple access systems [J]. IET Communications, 2014, 8(18):3424-3434. [8] PLA A, LOPEZ B, MURILLO J. Multi-dimensional fairness for auction-based resource allocation [J]. Knowledge-Based Systems, 2015, 73:134-148. [9] LAN T, KAO D, CHIANG M, et al. An axiomatic theory of fairness in network resource allocation[C]//Proceedings of IEEE INFOCOM 2010. Piscataway, NJ: IEEE, 2010:1343-1351. [10] WONG C J, SEN S, LAN T, et al. Multi-resource allocation: fairness-efficiency tradeoffs in a unifying framework[C]//Proceedings of the IEEE INFOCOM 2012. Piscataway, NJ: IEEE, 2012:1206-1214. [11] LU D, MA J F, XI N, et al. A universal fairness evaluation framework for resource allocation in cloud computing communications [J]. China Communications, 2015, 12(5): 113-122. [12] UCHIDA M, KUROSE J. An information-theoretic characterization of weighted α-proportional fairness[C]//Proceedings of IEEE INFOCOM 2009. Piscataway, NJ: IEEE, 2009: 1053-1061. [13] SEDIQ A B, GOHARY H, YANIKOMEROGLU H. Optimal tradeoff between efficiency and Jain's fairness index in resource allocation[C]//Proceedings of the 2012 IEEE 23rd International Symposium on Personal, Indoor and Mobile Radio Communications. Piscataway, NJ: IEEE, 2012:577-583. [14] XUE S J, SHI W L, XU X L. A heuristic scheduling algorithm based on PSO in the cloud computing environment [J]. International Journal of u-and e-Service, Science and Technology, 2016, 9(1):349-362. [15] GHODSI A, ZAHARIA M, SHENKER S, et al. Choosy: max-min fair sharing for datacenter jobs with constraints [C]//EuroSys 2013: Proceedings of the 8th ACM European Conference on Computer Systems. New York: ACM, 2013:365-378. [16] REISS C, WILKES J, HELLERSTEIN J L. Google cluster usage traces[EB/OL]. [2014-07-09]. http://code.google.com/p/googleclusterdata. [17] REISS C, TUMANOV A, GANGER G R, et al. Heterogeneity and dynamicity of clouds at scale: Google trace analysis[C]//SoCC 2012: Proceedings of the Third ACM Symposium on Cloud Computing. New York: ACM, 2012: Article No. 7. |