[1] ZHENG K, CAI Z, ZHANG X, et al. Algorithms to speedup pattern matching for network intrusion detection systems[J]. Computer Communications, 2015, 62(C):47-58.
[2] SUNG J S, KANG S M, KWON T G. Pattern matching acceleration for network intrusion detection systems[C]//Proceedings of the 2005 International Conference on Embedded Computer Systems:Architectures, Modeling, and Simulation. Berlin:Springer, 2005:289-298.
[3] 李鹏,周文欢.基于K-means和决策树的混合入侵检测算法[J]. 计算机与现代化, 2017(12):12-16.(LI P, ZHOU W H. Mixed intrusion detection algorithm based on K-means and decision tree[J]. Computer and Modernization, 2017(12):12-16.)
[4] 戚名钰,刘铭,傅彦铭. 基于PCA的SVM网络入侵检测研究[J].信息网络安全, 2015(2):15-18.(QI M Y, LIU M, FU Y M. Research on network intrusion detection using support vector machines based on principal component analysis[J]. Netinfo Security, 2015(2):15-18.)
[5] XU Y, ZHAO H. Intrusion detection alarm filtering technology based on ant colony clustering algorithm[C]//Proceedings of the 2015 6th International Conference on Intelligent Systems Design and Engineering Applications. Washington, DC:IEEE Computer Society, 2016:470-473.
[6] 王秀英. 分布式网络时序关联入侵攻击行为检测系统设计[J]. 现代电子技术, 2018, 41(3):108-114. (WANG X Y. Design of temporal sequence association rule based intrusion detection behavior detection system for distributed network[J]. Modern Electronics Technique, 2018, 41(3):108-114.)
[7] ROY S S, MALLIK A, GULATI R, et al. A deep learning based artificial neural network approach for intrusion detection[C]//Proceedings of the 2017 International Conference on Mathematics and Computing, CCIS 655. Berlin:Springer, 2017:44-53.
[8] 马勇.模糊推理结合Michigan型遗传算法的网络入侵检测方案[J].电子设计工程,2016,24(11):108-111.(MA Y. A network intrusion detection schemer based on fuzzy inference and Michigan genetic algorithm[J]. Electronic Design Engineering, 2016, 24(11):108-111.)
[9] 陈虹,万广雪,肖振久.基于优化数据处理的深度信念网络模型的入侵检测方法[J].计算机应用,2017,37(6):1636-1643.(CHEN H, WAN G X, XIAO Z J. Intrusion detection method of deep belief network model based on optimization of data processing[J]. Journal of Computer Applications, 2017, 37(6):1636-1643.)
[10] QU F, ZHANG J, SHAO Z, et al. An intrusion detection model based on deep belief network[C]//Proceedings of the 2017 VI International Conference on Network, Communication and Computing. New York:ACM, 2017:97-101.
[11] YIN C, ZHU Y, FEI J, et al. A deep learning approach for intrusion detection using recurrent neural networks[J]. IEEE Access, 2017, 5:21954-21961.
[12] SHONE N, NGOC T N, PHAI V D, et al. A deep learning approach to network intrusion detection[J]. IEEE Transactions on Emerging Topics in Computational Intelligence, 2018, 2(1):41-50.
[13] 袁琴琴, 吕林涛. 基于改进蚁群算法与遗传算法组合的网络入侵检测[J]. 重庆邮电大学学报(自然科学版), 2017, 29(1):84-89.(YUAN Q Q, LYU L T. Network intrusion detection method based on combination of improved ant colony optimization and genetic algorithm[J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2017, 29(1):84-89.
[14] 魏明军,王月月,金建国. 一种改进免疫算法的入侵检测设计[J].西安电子科技大学学报(自然科学版),2016,43(2):126-131.(WEI M J, WANG Y Y, JIN J G. Intrusion detection design of the impoved immune algorithm[J]. Journal of Xidian University (Natural Science), 2016, 43(2):126-131.)
[15] 贾凡,孔令智.基于卷积神经网络的入侵检测算法[J].北京理工大学学报,2017,37(12):1271-1275.(JIA F, KONG L Z. Intrusion detection algorithm based on convolutional neural network[J]. Transactions of Beijing Institute of Technology, 2017, 37(12):1271-1275.)
[16] 王明,李剑.基于卷积神经网络的网络入侵检测系统[J]. 信息安全研究,2017,3(11):990-994.(WANG M, LI J. Network intrusion detection model based on convolutional neural network[J]. Journal of Information Securyity Research, 2017, 3(11):990-994.)
[17] KWON D K, NATARAJAN K, SUH S C, et al. An empirical study on network anomaly detection using convolutional neural networks[C]//Proceedings of the IEEE 38th International Conference on Distributed Computing Systems. Piscataway, NJ:IEEE, 2018:1595-1598.
[18] VINAYAKUMAR R, SOMAN K P, POORNACHANDRAN P. Applying convolutional neural network for network intrusion detection[C]//Proceedings of the 2017 International Conference on Advanced Computing, Communications and Informatics. Piscataway, NJ:IEEE, 2017:1222-1228.
[19] DHANABAL L, PERIYASAMY S S. A study on NSL-KDD dataset for intrusion detection system based on classification algorithms[J]. International Journal of Advanced Research in Computer and Communication Engineering, 2015, 4(6):446-452.
[20] NSL-KDD dataset[EB/OL].[2018-07-20]. http://nsl.cs.unb.ca/NSL-KDD/.
[21] TensorFlow-GPU[EB/OL].[2018-07-20]. https://www.tensorflow.org/.
[22] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
[23] HINTON G E, OSINDERO S, TEH Y. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7):1527-1554.
[24] CHUNG J, GULCEHRE C, CHO K, et al. Gated feedback recurrent neural networks[C]//Proceedings of the 2015 International Conference on Machine Learning. New York:International Machine Learning Society, 2015:2067-2075. |