| [1] 余翔, 王新民, 李俨. 无人直升机路径规划算法研究[J]. 计算机应用, 2006, 26(2):494-495. (YU X, WANG X M, LI Y. Study of a path planning algorithm for unmanned helicopter[J]. Journal of Computer Applications, 2006, 26(2):494-495.) [2] 张超超, 房建东. 基于定向加权A*算法的自主移动机器人路径规划[J]. 计算机应用, 2017, 37(S2):77-81. (ZAHNG C C, FANG J D. Path planning of autonomous mobile robot based on directional weighted A* algorithm[J]. Journal of Computer Applications, 2017, 37(S2):77-81.)
 [3] BRANDES U. A faster algorithm for betweenness centrality[J]. Journal of Mathematical Sociology, 2001, 25(2):163-177.
 [4] HART P E, NILSSON N J, RAPHAEL B. A formal basis for the heuristic determination of minimum cost paths[J]. IEEE Transactions on Systems Science and Cybernetics, 1968, 4(2):100-107.
 [5] STENTZ A. Optimal and efficient path planning for partially-known environments[C]//Proceedings of the 1994 IEEE International Conference on Robotics and Automation. Piscataway:IEEE, 1994:3310-3317.
 [6] KARAMAN S, WALTER M R, PEREZ A, et al. Anytime motion planning using the RRT*[C]//Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Piscataway:IEEE, 2011:1478-1483.
 [7] HU X, CHEN L, TANG B, et al. Dynamic path planning for autonomous driving on various roads with avoidance of static and moving obstacles[J]. Mechanical Systems and Signal Processing, 2018, 100:482-500.
 [8] LECUN Y L, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
 [9] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
 [10] 胡学敏, 易重辉, 陈钦, 等. 基于运动显著图的人群异常行为检测[J]. 计算机应用, 2018, 38(4):1164-1169. (HU X M, YI C H, CHEN Q, et al. Abnormal crowd behavior detection based on motion saliency map[J]. Journal of Computer Applications, 2018, 38(4):1164-1169.)
 [11] WOJNA Z, GORBAN A N, LEE D, et al. Attention-based extraction of structured information from street view imagery[C]//Proceedings of the 14th IAPR International Conference on Document Analysis and Recognition. Piscataway:IEEE, 2017:844-850.
 [12] BOJARSKI M, del TESTA D, DWORAKOWSKI D, et al. End to end learning for self-driving cars[EB/OL]. (2016-04-25)[2019-02-23]. https://arxiv.org/pdf/1604.07316.pdf.
 [13] CHEN C Y, SEFF A, KORNHASUER A, et al. Deep driving:learning affordance for direct perception in autonomous driving[C]//Proceedings of the IEEE 2015 International Conference on Computer Vision. Piscataway:IEEE, 2015:2722-2730.
 [14] SALLAB A E L, ABDOU M, PEROT E, et al. Deep reinforcement learning framework for autonomous driving[EB/OL].[2019-01-10]. https://arxiv.org/abs/1704.02532.
 [15] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2019-01-20]. https://arxiv.org/pdf/1409.1556.pdf.
 [16] JIA Y, SHELHAMER E, DONAHUE J, et al. Caffe:convolutional architecture for fast feature embedding[C]//Proceedings of the 22nd ACM Conference on Multimedia. New York:ACM, 2014:675-678.
 [17] THORPE S, FIZE D, MARLOT C. Speed of processing in the human visual system[J]. Nature, 1996, 381(6582):520-522.
 |