[1] YALI S, FUZHI Z, WENYUAN L. An adaptive point-of-interest recommendation method for location-based social networks based on user activity and spatial features[J]. Knowledge-Based Systems, 2019, 163(1):267-282. [2] 袁冠.移动对象轨迹数据挖掘方法[D].徐州:中国矿业大学,2012:1-7. (YUAN G. Research on the mining methods of trajectory data for moving objects[D]. Xuzhou:China University of Mining and Technology, 2012:1-7.) [3] 袁冠,夏士雄,张磊,等.基于结构相似度的轨迹聚类算法[J].通信学报, 2011, 32(9):103-110. (YUAN G, XIA S X, ZHANG L, et al. Trajectory clustering algorithm based on structural similarity[J]. Journal on Communications, 2011, 32(9):103-110.) [4] ZHANG Z, LIU Y, ZHANG Z, et al. Fused matrix factorization with multi-tag, social and geographical influences for POI recommendation[J]. World Wide Web, 2019, 22(3):1135-1150. [5] LI H, GE Y, HONG R, et al. Point-of-Interest recommendations:learning potential check-ins from friends[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2016:975-984. [6] GAO H, TANG J, LIU H. gSCorr:modeling geo-social correlations for new check-ins on location-based social networks[C]//Proceedings of the 21st ACM International Conference on Information and Knowledge Management. New York:ACM, 2012:1582-1586. [7] ZHANG J. GeoSoCa:exploiting geographical, social and categorical correlations for point-of-interest recommendations categories and subject descriptors[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 2015:443-452. [8] YUAN Q, CONG G, MA Z, et al. Time-aware point-of-interest recommendation[C]//Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 2013:363-372. [9] YE M, YIN P, LEE W C, et al. Exploiting geographical influence for collaborative point-of-interest recommendation[C]//Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. New York:ACM, 2011:325-334. [10] LIU B, FU Y, YAO Z, et al. Learning geographical preferences for point-of-interest recommendation[C]//Proceedings of the 19th International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2013:1043-1051. [11] ZHANG J D, CHOW C Y. iGSLR:personalized geo-social location recommendation:a kernel density estimation approach[C]//Proceedings of the 21st ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems. New York:ACM, 2013:334-343. [12] GAO H, TANG J, HU X, et al. Exploring temporal effects for location recommendation on location-based social networks[C]//Proceedings of the 7th ACM Conference on Recommender Systems. New York:ACM, 2013:93-100. [13] 吴燕,章韵,陈双双.混合时空和流行度特征的兴趣点推荐算法[J].计算机工程,2018,44(9):59-63,69.(WU Y, ZHANG Y, CHEN S S. Point of interest recommendation algorithm fusing with spatiotemporal and popularity features[J]. Computer Engineering, 2018, 44(9):59-63, 69.) [14] 司亚利,李峰,宋亚伟.结合流行度特征和核密度估计的兴趣点推荐算法[J].小型微型计算机系统,2016,37(11):2416-2420. (SI Y L, LI F, SONG Y W. Point-of-interest recommendation algorithm combining popularity feature and kernel density estimation[J]. Journal of Chinese Computer Systems, 2016, 37(11):2416-2420.) [15] 张琛.社交网络用户影响力的评估算法研究[D].武汉:武汉邮电科学研究院, 2018:15-22. (ZHANG C. Research on evaluation algorithms of social network user's influence[D]. Wuhan:Wuhan Research Institute of Posts and Telecommunications, 2018:15-22.) |