[1] 唐贤伦,杜一铭,刘雨微,等.基于条件深度卷积生成对抗网络的图像识别方法[J].自动化学报,2018,44(5):855-864.(TANG X L, DU Y M, LIU Y W, et al. Recognition with conditional deep convolutional generative adversarial networks[J]. Acta Automatica Sinica,2018,44(5):855-864.) [2] PINHEIRO P O, COLLOBERT R, DOLLAR P. Learning to segment object candidates[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. New York:ACM, 2015:1990-1998. [3] REN S, HE K, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2015, 39(6):1137-1149. [4] GONG Y, JIA Y, LEUNG T, et al. Deep convolutional ranking for multilabel image annotation[EB/OL].[2018-04-14]. https://pdfs.semanticscholar.org/3b04/9d8cfea6c3bed377090e0e7fa677d282a361.pdf. [5] RIBEIRO M T, SINGH S, GUESTRIN C. "Why should I trust you?":Explaining the predictions of any classifier[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York:ACM, 2016:1135-1144. [6] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2018-04-10]. http://www.cs.virginia.edu/~vicente/recognition/slides/lecture07/iclr2015.pdf. [7] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2015:1-9. [8] HE K, ZHANG X, REN S, et al. Deep residual learning for image recognition[C]//Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2016:770-778. [9] HUANG G, LIU Z, LAURENS V D M, et al. Densely connected convolutional networks[C]//Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:IEEE, 2017:2261-2269. [10] ERHAN D, BENGIO Y, COURVILLE A, et al. Visualizing higher-layer features of a deep network[C]//Proceedings of the 26th Annual International Conference on Machine Learning. New York:ACM, 2009:1341-1349. [11] NGIAM J, CHEN Z, CHIA D, et al. Tiled convolutional neural networks[C]//Proceedings of the 2010 Conference on Natural Information Processing System. Columbia:MIT Press, 2010:1279-1287. [12] BERKES P, WISKOTT L. On the analysis and interpretation of inhomogeneous quadratic forms as receptive fields[J]. Neural Computation, 2006, 18(8):1868-1895. [13] DONAHUE J, JIA Y, VINYALS O, et al. DeCAF:a deep convolutional activation feature for generic visual recognition[C]//Proceedings of the 31st International Conference on International Conference on Machine Learning.[S. l.]:JMLR.org, 2014:I-647-I-655. [14] 俞海宝,沈琦,冯国灿.在反卷积网络中引入数值解可视化卷积神经网络[J].计算机科学,2017,44(S1):146-150.(YU H B, SHEN Q, FENG G C. Introduce numerical solution to visualize convolutional neuron networks based on numerical solution[J]. Computer Science, 2017, 44(S1):146-150.) [15] WANG X, HAMILTON H J. DBRS:a density-based spatial clustering method with random sampling[C]//Proceedings of the 7th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. Berlin:Springer-Verlag, 2003:563-575. |