[1] ZHU Z,DONG S,YU C,et al. A text hybrid clustering algorithm based on HowNet semantics[J]. Key Engineering Materials,2011, 474/476:2071-2078. [2] PANG B,LEE L. Opinion mining and sentiment analysis[J]. Foundations and Trends in Information Retrieval,2008,2(1/2):1-135. [3] MORAES R,VALIATI J F,NETO W P G. Document-level sentiment classification:an empirical comparison between SVM and ANN[J]. Expert Systems with Applications, 2013, 40(2):621-633. [4] LIU B. Sentiment Analysis:Mining Opinions,Sentiments,And Emotions[M]. New York:Cambridge University Press,2015:47-68. [5] SOCHER R,PENNINGTON J,HUANG E H,et al. Semi-supervised recursive autoencoders for predicting sentiment distributions[C]//Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing. Stroudsburg:Association for Computational Linguistics,2011:151-161. [6] QIAN Q,TIAN B,HUANG M,et al. Learning tag embeddings and tag-specific composition functions in recursive neural network[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg:Association for Computational Linguistics,2015:1365-1374. [7] WANG X,LIU Y,SUN C,et al. Predicting polarities of tweets by composing word embeddings with long short-term memory[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. Stroudsburg:Association for Computational Linguistics,2015:1343-1353. [8] WANG X,JIANG W,LUO Z. Combination of convolutional and recurrent neural network for sentiment analysis of short texts[C]//Proceedings of the 26th International Conference on Computational Linguistics. Osaka:The COLING 2016 Organizing Committee,2016:2428-2437. [9] GUGGILLA C,MILLER T,GUREVYCH I. CNN-and LSTM-based claim classification in online user comments[C]//Proceedings of the 26th International Conference on Computational Linguistics. Osaka:The COLING 2016 Organizing Committee,2016:2740-2751. [10] AKHTAR S,KUMAR A,GHOSAL D,et al. A multilayer perceptron based ensemble technique for fine-grained financial sentiment analysis[C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. Stroudsburg:Association for Computational Linguistics,2017:540-546. [11] BAHDANAU D,CHO K,BENGIO Y. Neural machine translation by jointly learning to align and translate[EB/OL].[2019-03-12]. https://arxiv.org/pdf/1409.0473.pdf. [12] 曾锋, 曾碧卿, 韩旭丽, 等. 基于双层注意力循环神经网络的方面级情感分析[J]. 中文信息学报,2019,33(6):108-115. (ZENG F,ZENG B Q,HAN X L,et al. Double attention neural network for aspect-based sentiment analysis[J]. Journal of Chinese Information Processing,2019,33(6):108-115.) [13] 曾碧卿, 韩旭丽, 王盛玉, 等. 基于双注意力卷积神经网络模型的情感分析研究[J]. 广东工业大学学报,2019,36(4):10-17. (ZENG B Q,HAN X L,WANG S Y,et al. Sentiment classification based on double attention convolutional neural network model[J]. Journal of Guangdong University of Technology,2019,36(4):10-17.) [14] 韩萍, 孙佳慧, 方澄, 等. 基于情感融合和多维注意力机制的微博文本情感分析[J]. 计算机应用,2019,39(S1):75-78. (HAN P,SUN J H,FANG C,et al. Micro-blog sentiment analysis based on emotional fusion and multi-dimensional self-attention mechanism[J]. Journal of Computer Applications, 2019, 39(S1):75-78.) [15] 石磊, 张鑫倩, 陶永才, 等. 结合自注意力机制和Tree-LSTM的情感分析模型[J]. 小型微型计算机系统, 2019, 40(7):1486-1490. (SHI L,ZHANG X Q,TAO Y C,et al. Sentiment analysis model with the combination of self-attention and tree-LSTM[J]. Journal of Chinese Computer Systems, 2019, 40(7):1486-1490.) [16] BENGIO Y,DUCHARME R,VINCENT P,et al. A neural probabilistic language model[J]. Journal of Machine Learning Research,2003,3:1137-1155. [17] MIKOLOV T,CHEN K,CORRADO G,et al. Efficient estimation of word representations in vector space[EB/OL].[2019-03-072]. https://arxiv.xilesou.top/pdf/1301.3781.pdf. [18] PENNINGTON J,SOCHER R,MANNING C. Glove:global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing. Stroudsburg:Association for Computational Linguistics,2014:1532-1543. [19] KIROS R,ZHU Y,SALAKHUTDINOV R,et al. Skip-thought vectors[C]//Proceedings of the 28th International Conference on Neural Information Processing Systems. Cambridge:MIT Press, 2015:3294-3302. [20] LOGESWARAN L,LEE H. An efficient framework for learning sentence representations[EB/OL].[2019-03-12]. https://arxiv.org/pdf/1803.02893.pdf. [21] MCCANN B,BRADBURY J,XIONG C,et al. Learned in translation:Contextualized word vectors[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. New York:Curran Associates Inc.,2017:6297-6308. [22] CER D,YANG Y,KONG S,et al. Universal sentence encoder[EB/OL].[2019-03-11]. https://arxiv.org/pdf/1803.11175.pdf. [23] PETERS M,NEUMANN M,IYYER M,et al. Deep contextualized word representations[C]//Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. Stroudsburg:Association for Computational Linguistics,2018:2227-2237. [24] TAN S,ZHANG J. An empirical study of sentiment analysis for Chinese documents[J]. Expert Systems with Applications,2008, 34(4):2622-2629. [25] 赵富, 杨洋, 蒋瑞, 等. 融合词性的双注意力Bi-LSTM情感分析[J]. 计算机应用,2018,38(S2):103-106,147.(ZHAO F, YANG Y,JIANG R,et al. Sentiment analysis based on double-attention Bi-LSTM using part-of-speech[J]. Journal of Computer Applications,2018,38(S2):103-106,147.) [26] WANG X,LI J,YANG X,et al. Chinese text sentiment analysis using bilinear character-word convolutional neural networks[C]//Proceedings of the 2017 International of Conference on Computer Science and Application Engineering. Lancaster,PA:DEStech Publications Inc.,2017:36-43. [27] 杜永萍, 赵晓铮, 裴兵兵. 基于CNN-LSTM模型的短文本情感分类[J]. 北京工业大学学报,2019,45(7):48-56. (DU Y P, ZHAO X Z,PEI B B. Short text sentiment classification based on CNN-LSTM model[J]. Journal of Beijing University of Technology,2019,45(7):48-56.) |