Journal of Computer Applications ›› 2020, Vol. 40 ›› Issue (2): 386-391.DOI: 10.11772/j.issn.1001-9081.2019081401
• DPCS 2019 • Previous Articles Next Articles
Zhixiang LIU1, Huichao LIU1, Dongmei HUANG1,2(), Liping ZHOU3, Cheng SU4
Received:
2019-07-31
Revised:
2019-08-30
Accepted:
2019-09-19
Online:
2019-09-29
Published:
2020-02-10
Contact:
Dongmei HUANG
About author:
LIU Zhixiang, born in 1986, Ph. D., lecturer. His research interests include high performance computing, computational fluid dynamics.Supported by:
刘智翔1, 刘慧超1, 黄冬梅1,2(), 周丽萍3, 苏诚4
通讯作者:
黄冬梅
作者简介:
刘智翔(1986—),男,湖南邵东人,讲师,博士,CCF会员,主要研究方向:高性能计算、计算流体力学基金资助:
CLC Number:
Zhixiang LIU, Huichao LIU, Dongmei HUANG, Liping ZHOU, Cheng SU. IB-LBM parallel optimization method mixed with multiple task scheduling modes[J]. Journal of Computer Applications, 2020, 40(2): 386-391.
刘智翔, 刘慧超, 黄冬梅, 周丽萍, 苏诚. 多种任务调度混合的IB-LBM并行优化方法[J]. 《计算机应用》唯一官方网站, 2020, 40(2): 386-391.
Add to citation manager EndNote|Ris|BibTeX
URL: https://www.joca.cn/EN/10.11772/j.issn.1001-9081.2019081401
演化函数 | 线程数 | |||
---|---|---|---|---|
2 | 4 | 8 | 16 | |
恢复力的计算 | s | s | g | g |
体积力的计算 | d | g | d | g |
碰撞和迁移 | d | g | d | d |
边界处理 | d | g | g | d |
宏观量的计算 | d | d | g | g |
计算参考点位置 | s | s | g | g |
Tab. 1 The best combination of multiple task scheduling modes
演化函数 | 线程数 | |||
---|---|---|---|---|
2 | 4 | 8 | 16 | |
恢复力的计算 | s | s | g | g |
体积力的计算 | d | g | d | g |
碰撞和迁移 | d | g | d | d |
边界处理 | d | g | g | d |
宏观量的计算 | d | d | g | g |
计算参考点位置 | s | s | g | g |
调度方式 | 线程数 | |||
---|---|---|---|---|
2 | 4 | 8 | 16 | |
理想状态 | 2.000 | 4.000 | 8.000 | 16.000 |
多种任务调度 | 1.944 | 3.746 | 7.149 | 12.416 |
s调度 | 1.862 | 3.695 | 6.813 | 10.828 |
d调度 | 1.760 | 3.678 | 6.795 | 12.167 |
g调度 | 1.696 | 3.542 | 6.643 | 10.560 |
Tab. 2 Speedup of ideal state, multiple task scheduling and single scheduling
调度方式 | 线程数 | |||
---|---|---|---|---|
2 | 4 | 8 | 16 | |
理想状态 | 2.000 | 4.000 | 8.000 | 16.000 |
多种任务调度 | 1.944 | 3.746 | 7.149 | 12.416 |
s调度 | 1.862 | 3.695 | 6.813 | 10.828 |
d调度 | 1.760 | 3.678 | 6.795 | 12.167 |
g调度 | 1.696 | 3.542 | 6.643 | 10.560 |
流场规模 | 线程数 | |||
---|---|---|---|---|
2 | 4 | 8 | 16 | |
理想状态 | 2.000 | 4.000 | 8.000 | 16.000 |
10万 | 1.609 | 3.157 | 5.529 | 8.450 |
100万 | 1.824 | 3.649 | 7.269 | 12.522 |
1 000万 | 1.916 | 3.992 | 7.996 | 14.854 |
Tab. 3 Speedup of ideal state and different flow field scales
流场规模 | 线程数 | |||
---|---|---|---|---|
2 | 4 | 8 | 16 | |
理想状态 | 2.000 | 4.000 | 8.000 | 16.000 |
10万 | 1.609 | 3.157 | 5.529 | 8.450 |
100万 | 1.824 | 3.649 | 7.269 | 12.522 |
1 000万 | 1.916 | 3.992 | 7.996 | 14.854 |
Re | 对比文献 | 阻力系数 | L | Re | 对比文献 | 阻力系数 | L |
---|---|---|---|---|---|---|---|
20 | Seta等[ | 2.045 | 1.88 | 40 | Seta等[ | 1.572 | 4.66 |
Hu等[ | 2.106 | 1.90 | Hu等[ | 1.569 | 4.64 | ||
Jafari等[ | 2.106 | 1.90 | Jafari等[ | 1.569 | 4.64 | ||
本文 | 2.105 | 1.83 | 本文 | 1.505 | 4.53 |
Tab. 4 Comparison of drag coefficient and recirculation zone length (L) when Re=20, 40
Re | 对比文献 | 阻力系数 | L | Re | 对比文献 | 阻力系数 | L |
---|---|---|---|---|---|---|---|
20 | Seta等[ | 2.045 | 1.88 | 40 | Seta等[ | 1.572 | 4.66 |
Hu等[ | 2.106 | 1.90 | Hu等[ | 1.569 | 4.64 | ||
Jafari等[ | 2.106 | 1.90 | Jafari等[ | 1.569 | 4.64 | ||
本文 | 2.105 | 1.83 | 本文 | 1.505 | 4.53 |
Re | 对比文献 | 阻力系数 | St | Re | 对比文献 | 阻力系数 | St |
---|---|---|---|---|---|---|---|
100 | Gresho等[ | 1.760 | 0.180 | 200 | Gresho等[ | 1.760 | 0.210 |
Ehsan等[ | 1.342 | 0.166 | Saiki等[ | 1.180 | 0.197 | ||
Lee等[ | 1.340 | 0.165 | Wu等[ | 1.349 | 0.193 | ||
本文 | 1.664 | 0.160 | 本文 | 1.633 | 0.190 |
Tab. 5 Comparison of drag coefficient and Strouhal number (St) when Re=100, 200
Re | 对比文献 | 阻力系数 | St | Re | 对比文献 | 阻力系数 | St |
---|---|---|---|---|---|---|---|
100 | Gresho等[ | 1.760 | 0.180 | 200 | Gresho等[ | 1.760 | 0.210 |
Ehsan等[ | 1.342 | 0.166 | Saiki等[ | 1.180 | 0.197 | ||
Lee等[ | 1.340 | 0.165 | Wu等[ | 1.349 | 0.193 | ||
本文 | 1.664 | 0.160 | 本文 | 1.633 | 0.190 |
1 | PESKIN C S. Numerical analysis of blood flow in the heart[J]. Journal of Computational Physics, 1977, 25(3):220-252. 10.1016/0021-9991(77)90100-0 |
2 | FENG Z, MICHAELIDES E E. The immersed boundary-lattice Boltzmann method for solving fluid-particles interaction problems[J]. Journal of Computational Physics, 2004, 195(2):602-628. 10.1016/j.jcp.2003.10.013 |
3 | MA X, HUANG B, WANG G, et al. Numerical simulation of the red blood cell aggregation and deformation behaviors in ultrasonic field[J]. Ultrasonics Sonochemistry, 2017, 38: 604-613. 10.1016/j.ultsonch.2016.08.021 |
4 | AFRA B, NAZARI M, KAYHANI M H, et al. An immersed boundary-lattice Boltzmann method with a robust lattice spring model for solving flow-structure-interaction problems[J]. Applied Mathematical Modelling, 2018, 55: 502-521. 10.1016/j.apm.2017.10.014 |
5 | GONG C, FANG Z, CHEN G. A lattice Boltzmann-immersed boundary-finite element method for nonlinear fluid-solid interaction simulation with moving objects[J]. International Journal of Computational Methods, 2018, 15(7): No.1850063. 10.1142/s0219876218500639 |
6 | WANG L, ZHANG L. Lattice Boltzmann method with immersed spring boundaries for flow around deformable porous media[J]. Computers and Fluids, 2017, 155: 161-170. 10.1016/j.compfluid.2016.07.003 |
7 | VALERO-LARA P, PINELLI A, PRIETO-MATIAS M. Accelerating solid-fluid interaction using lattice-Boltzmann and immersed boundary coupled simulations on heterogeneous platforms[J]. Procedia Computer Science, 2014, 29: 50-61. 10.1016/j.procs.2014.05.005 |
8 | LORENZ E, SIVADASAN V, BONN D, et al. Combined lattice-Boltzmann and rigid-body method for simulations of shear-thickening dense suspensions of hard particles[J]. Computers and Fluids, 2018, 172: 474-482. 10.1016/j.compfluid.2018.03.056 |
9 | QIAN Y H, D’HUMIÈRES D, LALLEMAND P. Lattice BGK models for Navier-Stokes equation[J]. Europhysics Letters, 1992, 17(6):479-484. 10.1209/0295-5075/17/6/001 |
10 | GUO Z, ZHENG C, SHI B. Non-equilibrium extrapolation method for velocity and boundary conditions in the lattice Boltzmann method[J]. Chinese Physics, 2002, 11(4):366-374. 1009-1963(2002)l:4<366:NEEMFV>2.0.TX;2-W |
11 | GUO Z, ZHENG C, SHI B. Discrete lattice effects on the forcing term in the lattice Boltzmann method[J]. Physical Review E, 2002, 654 Pt 2B): No.046308. 10.1103/PhysRevE.65.046308 |
12 | SETA T, UCHIYAMA T, TAKANO N. Smoothed profile-lattice Boltzmann method for non-penetration and wetting boundary conditions in two and three dimensions[J]. Computers and Fluids, 2017, 159:64-80. 10.1016/j.compfluid.2017.09.012 |
13 | HU Y, LI D, SHU S, et al. An efficient smoothed profile-lattice Boltzmann method for the simulation of forced and natural convection flows in complex geometries[J]. International Communications in Heat and Mass Transfer, 2015, 68:188-199. 10.1016/j.icheatmasstransfer.2015.05.030 |
14 | JAFARI S, YAMAMOTO R, RAHNAMA M. Lattice-Boltzmann method combined with smoothed-profile method for particulate suspensions[J]. Physical Review E, 2011, 83(2 Pt 2): No.026702. 10.1103/physreve.83.026702 |
15 | GRESHO P M, CHAN S T, LEE R L, et al. A modified finite element method for solving the time-dependent, incompressible Navier-Stokes equations. I: theory[J]. International Journal for Numerical Methods in Fluids, 1984, 4(6): 557-598. 10.1002/fld.1650040608 |
16 | ADEEB E, HAIDER B A, SOHN C H. Influence of rounded corners on flow interference between two tandem cylinders using FVM and IB-LBM[J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2018, 28(7): 1648-1663. 10.1108/HFF-08-2017-0319 |
17 | LEE K, YANG K S. Flow patterns past two circular cylinders in proximity[J]. Computers and Fluids, 2009, 38(4):778-788. 10.1016/j.compfluid.2008.07.005 |
18 | SAIKI E M, BIRINGEN S. Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method[J]. Journal of Computational Physics, 1996, 123(2):450-465. 10.1006/jcph.1996.0036 |
19 | WU J, SHU C. Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications[J]. Journal of Computational Physics, 2009, 228(6): 1963-1979. 10.1016/j.jcp.2008.11.019 |
[1] | Rui ZHANG, Pengyun ZHANG, Meirong GAO. Self-optimized dual-modal multi-channel non-deep vestibular schwannoma recognition model [J]. Journal of Computer Applications, 2024, 44(9): 2975-2982. |
[2] | Runlian ZHANG, Mi ZHANG, Xiaonian WU, Rui SHU. Differential property evaluation method based on GPU for large-state cryptographic S-boxes [J]. Journal of Computer Applications, 2024, 44(9): 2785-2790. |
[3] | Shuo SUN, Wei ZHANG, Wendi FENG, Yuwei ZHANG. Automatic foreign function interface generation method based on source code analysis [J]. Journal of Computer Applications, 2024, 44(7): 2151-2159. |
[4] | Jun FENG, Jiankang BI, Yiru HUO, Jiakuan LI. PIPNet: lightweight asphalt pavement crack image segmentation network [J]. Journal of Computer Applications, 2024, 44(5): 1520-1526. |
[5] | Jian SUN, Baoquan MA, Zhuiwei WU, Xiaohuan YANG, Tao WU, Pan CHEN. Joint optimization of UAV swarm path planning and task allocation balance in earthquake scenarios [J]. Journal of Computer Applications, 2024, 44(10): 3232-3239. |
[6] | Shaofa SHANG, Lin JIANG, Yuancheng LI, Yun ZHU. Adaptive partitioning and scheduling method of convolutional neural network inference model on heterogeneous platforms [J]. Journal of Computer Applications, 2023, 43(9): 2828-2835. |
[7] | Zhenyu LIU, Chaokun WANG, Gaoyang GUO. Parallel algorithm of betweenness centrality for dynamic networks [J]. Journal of Computer Applications, 2023, 43(7): 1987-1993. |
[8] | Heping FANG, Shuguang LIU, Yongyi RAN, Kunhua ZHONG. Integrated scheduling optimization of multiple data centers based on deep reinforcement learning [J]. Journal of Computer Applications, 2023, 43(6): 1884-1892. |
[9] | Mengyi LI, Xia FANG, Hongbo ZHENG, Xujia QIN. Oriented line integral convolution algorithm for flow field based on information entropy [J]. Journal of Computer Applications, 2023, 43(4): 1233-1239. |
[10] | Mingchao NING, Junbo ZHANG, Ge CHEN. Task scheduling algorithm for service-oriented architecture-based industrial software [J]. Journal of Computer Applications, 2023, 43(3): 885-893. |
[11] | Qian LIU, Yangming ZHANG, Dingsheng WAN. Parallel computing algorithm of grid-based distributed Xin’anjiang hydrological model [J]. Journal of Computer Applications, 2023, 43(11): 3327-3333. |
[12] | Hu CHEN, Pengling ZHOU. Programming model for domestic high-performance many-core processor [J]. Journal of Computer Applications, 2023, 43(11): 3517-3526. |
[13] | WU Renbiao, ZHANG Zhenchi, JIA Yunfei, QIAO Han. Adaptive scheduling strategy based on deadline under cloud platform [J]. Journal of Computer Applications, 2023, 43(1): 176-184. |
[14] | JIANG Songyan, LIAO Xiaojuan, CHEN Guangzhu. Optimal task scheduling method based on satisfiability modulo theory for multiple processors with communication delay [J]. Journal of Computer Applications, 2023, 43(1): 185-191. |
[15] | Jingwen CAI, Yongzhuang WEI, Zhenghong LIU. GPU-based method for evaluating algebraic properties of cryptographic S-boxes [J]. Journal of Computer Applications, 2022, 42(9): 2750-2756. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||